Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical methods spectroscopy

X-ray spectroscopy Analytical method by which a sample is irradiated with X-rays, characteristic radiation being emitted after scattering from the specimen. The detection limits for various elements are of the ordering cm. ... [Pg.429]

Quantitative Analysis of Chimassorb 944 in Polyolefins by Ultraviolet Spectroscopy. Analytical Method No. C-260, Ciba-Geigy, Ardsley, NY (1982). [Pg.295]

Ultraviolet-visible (UV-VIS) spectroscopy Analytical method based on transitions between electronic energy states in molecules. Useful in studying conjugated systems such as polyenes. [Pg.1268]

The ability to make optical measurements on individual molecules and submicroscopic aggregates, one at a time, is a valuable new tool in several areas of molecular science. By eliminating inlromogeneous broadening it allows pure spectroscopy to be perfonned witli unprecedented precision in certain condensed phase systems. As an analytical method it pennits tire rapid detection of certain analytes witli unmatched sensitivity. Finally, it is revolutionizing our... [Pg.2503]

Thus, in the area of combinatorial chemistry, many compounds are produced in short time ranges, and their structures have to be confirmed by analytical methods. A high degree of automation is required, which has fueled the development of software that can predict NMR spectra starting from the chemical structure, and that calculates measures of similarity between simulated and experimental spectra. These tools are obviously also of great importance to chemists working with just a few compounds at a time, using NMR spectroscopy for structure confirmation. [Pg.518]

The focus of this chapter is photon spectroscopy, using ultraviolet, visible, and infrared radiation. Because these techniques use a common set of optical devices for dispersing and focusing the radiation, they often are identified as optical spectroscopies. For convenience we will usually use the simpler term spectroscopy in place of photon spectroscopy or optical spectroscopy however, it should be understood that we are considering only a limited part of a much broader area of analytical methods. Before we examine specific spectroscopic methods, however, we first review the properties of electromagnetic radiation. [Pg.369]

Acetylene Derived from Hydrocarbons The analysis of purified hydrocarbon-derived acetylene is primarily concerned with the determination of other unsaturated hydrocarbons and iaert gases. Besides chemical analysis, physical analytical methods are employed such as gas chromatography, ir, uv, and mass spectroscopy. In iadustrial practice, gas chromatography is the most widely used tool for the analysis of acetylene. Satisfactory separation of acetylene from its impurities can be achieved usiag 50—80 mesh Porapak N programmed from 50—100°C at 4°C per minute. [Pg.378]

The nitroparaftins have been determined by procedures such as fractionation, titration, colorimetry, kifrared spectroscopy, mass spectrometry, and gas chromatography. The early analytical methods and uses of polynitroparaftins as analytical reagents have been reviewed (11). More recent quaHtative and quantitative methods have also been reviewed (83). [Pg.102]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

A detailed account is given in Reference 20. The techniques giving the most detailed 3-D stmctural information are x-ray and neutron diffraction, electron diffraction and microscopy (qv), and nuclear magnetic resonance spectroscopy (nmr) (see Analytical methods Magnetic spin resonance X-ray technology). [Pg.214]

Specifications and Analytical Methods. The purity of l-methyl-2-pyrrobdinone is determined by gas chromatography and is specified as 99.5 wt % minimum. Maximum moisture content is specified as 0.05 wt % by ir spectroscopy. [Pg.363]

There are a variety of analytical methods commonly used for the characterization of neat soap and bar soaps. Many of these methods have been pubUshed as official methods by the American Oil Chemists Society (29). Additionally, many analysts choose United States Pharmacopoeia (USP), British Pharmacopoeia (BP), or Pood Chemical Codex (FCC) methods. These methods tend to be colorimetric, potentiometric, or titrametric procedures. However, a variety of instmmental techniques are also frequendy utilized, eg, gas chromatography, high performance Hquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry. [Pg.159]

The objective ia any analytical procedure is to determine the composition of the sample (speciation) and the amounts of different species present (quantification). Spectroscopic techniques can both identify and quantify ia a single measurement. A wide range of compounds can be detected with high specificity, even ia multicomponent mixtures. Many spectroscopic methods are noninvasive, involving no sample collection, pretreatment, or contamination (see Nondestructive evaluation). Because only optical access to the sample is needed, instmments can be remotely situated for environmental and process monitoring (see Analytical METHODS Process control). Spectroscopy provides rapid real-time results, and is easily adaptable to continuous long-term monitoring. Spectra also carry information on sample conditions such as temperature and pressure. [Pg.310]

The field of steroid analysis includes identification of steroids in biological samples, analysis of pharmaceutical formulations, and elucidation of steroid stmctures. Many different analytical methods, such as ultraviolet (uv) spectroscopy, infrared (ir) spectroscopy, nuclear magnetic resonance (nmr) spectroscopy, x-ray crystallography, and mass spectroscopy, are used for steroid analysis. The constant development of these analytical techniques has stimulated the advancement of steroid analysis. [Pg.448]

Modem analytical techniques have been developed for complete characteri2ation and evaluation of a wide variety of sulfonic acids and sulfonates. The analytical methods for free sulfonic acids and sulfonate salts have been compiled (28). Titration is the most straightforward method of evaluating sulfonic acids produced on either a laboratory or an iadustrial scale (29,30). Spectroscopic methods for sulfonic acid analysis iaclude ultraviolet spectroscopy, iafrared spectroscopy, and and nmr spectroscopy (31). Chromatographic separation techniques, such as gc and gc/ms, are not used for free... [Pg.98]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

Infrared Spectroscopy (ir). Infrared curves are used to identify the chemical functionality of waxes. Petroleum waxes with only hydrocarbon functionality show slight differences based on crystallinity, while vegetable and insect waxes contain hydrocarbons, carboxyflc acids, alcohols, and esters. The ir curves are typically used in combination with other analytical methods such as dsc or gc/gpc to characterize waxes. [Pg.318]

Instrumental Methods for Bulk Samples. With bulk fiber samples, or samples of materials containing significant amounts of asbestos fibers, a number of other instmmental analytical methods can be used for the identification of asbestos fibers. In principle, any instmmental method that enables the elemental characterization of minerals can be used to identify a particular type of asbestos fiber. Among such methods, x-ray fluorescence (xrf) and x-ray photo-electron spectroscopy (xps) offer convenient identification methods, usually from the ratio of the various metal cations to the siUcon content. The x-ray diffraction technique (xrd) also offers a powerfiil means of identifying the various types of asbestos fibers, as well as the nature of other minerals associated with the fibers (9). [Pg.352]


See other pages where Analytical methods spectroscopy is mentioned: [Pg.47]    [Pg.47]    [Pg.80]    [Pg.1136]    [Pg.78]    [Pg.445]    [Pg.449]    [Pg.486]    [Pg.1]    [Pg.323]    [Pg.399]    [Pg.393]    [Pg.106]    [Pg.195]   
See also in sourсe #XX -- [ Pg.527 , Pg.528 ]




SEARCH



Analytical methods infrared spectroscopy

Analytical methods optical spectroscopy

Analytical spectroscopies

Derivative spectroscopy, analytical method

Derivative spectroscopy, analytical method Applications

Electron spectroscopy, analytical method

Electron spectroscopy, analytical method Applications

Emission spectroscopy, analytical method

FTIR spectroscopy, analytical method

Fluorescence spectroscopy, analytical method

Fluorescence spectroscopy, analytical method Applications

Laser spectroscopy, analytical method

Laser spectroscopy, analytical method Applications

Mossbauer spectroscopy, analytical method

Mossbauer spectroscopy, analytical method Applications

Near-infrared spectroscopy reference analytical method

Process Raman spectroscopy, analytical method

Process Raman spectroscopy, analytical method Applications

Process spectroscopy, analytical method

Process spectroscopy, analytical method Applications

Raman spectroscopy, analytical method

Raman spectroscopy, analytical method Applications

Spectroscopy method

Ultrasonic spectroscopy, analytical method

© 2024 chempedia.info