Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurities contents

Plasticity, and hence granulation efficiency, varies considerably with the nature and proportion of feed materials. Pure salts, such as potassium chloride and ammonium sulfate, lend Httle or no plasticity and thus are difficult to granulate. Superphosphates provide good plasticity. The plasticity of ammonium phosphates depends chiefly on the impurity content of iron and aluminum. The higher the impurity the greater the plasticity. In some cases, binders such as clay are added to provide plasticity. [Pg.233]

The continuous softening process used by The Broken Hill Associated Smelters Pty., Ltd. is particularly suitable for lead buUion of fairly uniform impurity content. The copper-drossed blast furnace buUion continuously flows in the feed end of a reverberatory furnace at 420°C, and the softened lead leaves the opposite end at 750°C. Oxidation and agitation is provided by compressed air blown through pipes extending down through the arch of the furnace into the bath. [Pg.44]

The cmde dimethyl terephthalate is recovered and purified by distillation in most processes. Although distillation (qv) is generally a powerful separation technique, the mode of production of the terephthaHc acid determines its impurity content, which in turn may make purification by distillation difficult. Processes resulting in the alteration of the impurities by catalytic treatment have been developed so that distillation can perform the necessary purification. [Pg.489]

The most commonly measured pigment properties ate elemental analysis, impurity content, crystal stmcture, particle size and shape, particle size distribution, density, and surface area. These parameters are measured so that pigments producers can better control production, and set up meaningful physical and chemical pigments specifications. Measurements of these properties ate not specific only to pigments. The techniques appHed are commonly used to characterize powders and soHd materials and the measutiag methods have been standardized ia various iadustries. [Pg.4]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

The dielectric breakdown strength in vitreous siUca depends on its impurity content, its surface texture, and the concentration of stmctural defects, such as cord and bubbles. Good quaUty glasses have room temperature breakdown strength in the range of 200—400 kV/cm. [Pg.507]

Alternatives to the fluidized-bed method process include the chlorination of titanium slags in chloride melts, chlorination with hydrogen chloride, and flash chlorination. The last is claimed to be particularly advantageous for minerals having a high impurity content (133—135,140). The option of chlorinating titanium carbide has also been considered (30). [Pg.131]

Because of the effects of impurity content and processing history, the mechanical properties of vanadium and vanadium alloys vary widely. The typical RT properties for pure vanadium and some of its alloys are hsted in Table 4. The effects of ahoy additions on the mechanical properties of vanadium have been studied and some ahoys that exhibit room-temperature tensile strengths of 1.2 GPa (175,000 psi) have strengths of up to ca 1000 MPa (145,000 psi) at 600°C. Beyond this temperature, most ahoys lose tensile strength rapidly. [Pg.385]

Fig. 2. Typical binary phase diagram for host and impurity, showing a constant distribution coefficient if impurity content is low. L = liquid composition after some solidification, a = B and small amount of A, /5 = A and small amount of B, = liquidus, and = solidus. Fig. 2. Typical binary phase diagram for host and impurity, showing a constant distribution coefficient if impurity content is low. L = liquid composition after some solidification, a = B and small amount of A, /5 = A and small amount of B, = liquidus, and = solidus.
Fig. 4. Movement of molten 2one by differential amount dm for initial 2one pass original solid has uniform impurity content... Fig. 4. Movement of molten 2one by differential amount dm for initial 2one pass original solid has uniform impurity content...
Small changes in impurity content did not affect this rate but the presence of water vapor and changes in partial pressure of oxygen were critical (61,62). Steam and various impurities and binders also affect the oxidation of siUcon carbide (63). Differences have been observed in oxygen adsorption on the different SiC crystal faces (64). [Pg.466]

MiscelDneous. Other important properties are resistance to thermal shock, attack by slag, and, in the case of refractories (qv), thermal expansion. For whiteware, translucency, acceptance of glazes, etc, may be extremely important. These properties depend on the clay mineral composition, the method of manufacture and impurity content. [Pg.205]

The total impurity content of anodes used in electrorefining is usually less than 1%, of which oxygen is the highest, ranging from ca 0.1 to 0.25%. This oxygen gives copper(I) oxide, which then reacts with the acid of the electrolyte... [Pg.203]

Figure 12 contrasts the decrease in conductivity of ETP copper with that of oxygen-free copper as impurity contents are increased. The importance of oxygen in modifying the effect of impurities on conductivity is clearly illustrated. Phosphoms, which is often used as a deoxidizer, has a pronounced effect in lowering electrical conductivity in oxygen-free copper, but Httie effect in the presence of excess oxygen. [Pg.210]

The output from brass mills in the United States is spHt nearly equally between copper and the alloys of copper. Copper and dilute copper alloy wrought products are melted and processed from electrically refined copper so as to maintain low impurity content. Copper alloys are commonly made from either refined copper plus elemental additions or from recycled alloy scrap. Copper alloys can be readily manufactured from remelted scrap while maintaining low levels of nonalloy impurities. A greater proportion of the copper alloys used as engineering materials are recycled than are other commercial materials. [Pg.218]

The removal of impurity in one pass can be calculated by making a mass balance for the advancing liquid phase. If the original impurity content of the bar is Co, and Cl is the impurity content of the liquid, then for an advatrce <5jc of the liquid, the amount dissolved into the advancing liquid minus dre amount deposited behind dre liquid is equal to the increase in the impurity content of the liquid... [Pg.305]

However, in rare cases, crystallisation is not a satisfactory method of purification, especially if the impurity forms crystals that are isomorphous with the material being purified. In fact, the impurity content may even be greater in such recrystallised material. For this reason, it still remains necessary to test for impurities and to remove or adequately lower their concentrations by suitable chemical manipulation prior to recrystallisation. [Pg.14]

In Total Reflection X-Ray Fluorescence Analysis (TXRF), the sutface of a solid specimen is exposed to an X-ray beam in grazing geometry. The angle of incidence is kept below the critical angle for total reflection, which is determined by the electron density in the specimen surface layer, and is on the order of mrad. With total reflection, only a few nm of the surface layer are penetrated by the X rays, and the surface is excited to emit characteristic X-ray fluorescence radiation. The energy spectrum recorded by the detector contains quantitative information about the elemental composition and, especially, the trace impurity content of the surface, e.g., semiconductor wafers. TXRF requires a specular surface of the specimen with regard to the primary X-ray light. [Pg.27]

In Secondary Ion Mass Spectrometry (SIMS), a solid specimen, placed in a vacuum, is bombarded with a narrow beam of ions, called primary ions, that are suffi-ciendy energedc to cause ejection (sputtering) of atoms and small clusters of atoms from the bombarded region. Some of the atoms and atomic clusters are ejected as ions, called secondary ions. The secondary ions are subsequently accelerated into a mass spectrometer, where they are separated according to their mass-to-charge ratio and counted. The relative quantities of the measured secondary ions are converted to concentrations, by comparison with standards, to reveal the composition and trace impurity content of the specimen as a function of sputtering dme (depth). [Pg.40]

The size of crystals produced in the gas-liquid system varied from 10 to 100 pm by controlling the level of supersaturation, while the liquid-liquid system produced crystals of 5—30 pm. The wide variation of crystal size is due to the marked sensitivity of the nucleation rate on the level of supersaturation, while the impurity content is another variable that can affect the crystal formation. [Pg.233]

The phase diagram and other properties were measured on metal Ti with the total impurity content less than 0.02%. [Pg.427]

Addition of about 0 04% arsenic will inhibit dezincification of a brasses in most circumstances and arsenical a brasses can be considered immune to dezincification for most practical purposes . There are conditions of exposure in which dezincification of these materials has been observed, e.g. when exposed outdoors well away from the sea , or when immersed in pure water at high temperature and pressure, but trouble of this type rarely arises in practice. In other conditions, e.g. in polluted sea-water, corrosion can occur with copper redeposition away from the site of initial attack, but this is not truly dezincification, which, by definition, requires the metallic copper to be produced in situ. The work of Lucey goes far in explaining the mechanism by which arsenic prevents dezincification in a brasses, but not in a-/3 brasses (see also Section 1.6). An interesting observation is that the presence of a small impurity content of magnesium will prevent arsenic in a brass from having its usual inhibiting effect . [Pg.696]

Ionic solids, such as lithium fluoride and sodium chloride, form regularly shaped crystals with well defined crystal faces. Pure samples of these solids are usually transparent and colorless but color may be caused by quite small impurity contents or crystal defects. Most ionic crystals have high melting points. [Pg.312]

The requirements placed on the performance and reliability of CVD coatings are continuously upgraded. For one thing, this means the need for an ever increasing degree of purity of the precursor materials since impurities are the maj or source of defects in the deposit. The purity of a gas is expressed in terms of nines, for instance, six nines, meaning a gas that is 99.9999% pure, which is now a common requirement. It is also expressed in ppm (parts per million) or ppb (parts per billion) of impurity content. [Pg.116]


See other pages where Impurities contents is mentioned: [Pg.87]    [Pg.225]    [Pg.226]    [Pg.128]    [Pg.107]    [Pg.169]    [Pg.491]    [Pg.494]    [Pg.60]    [Pg.383]    [Pg.446]    [Pg.449]    [Pg.450]    [Pg.452]    [Pg.511]    [Pg.563]    [Pg.203]    [Pg.1133]    [Pg.191]    [Pg.617]    [Pg.621]    [Pg.985]    [Pg.883]    [Pg.1305]    [Pg.538]    [Pg.343]    [Pg.344]   
See also in sourсe #XX -- [ Pg.386 , Pg.387 , Pg.389 , Pg.390 , Pg.391 ]




SEARCH



Carbon impurity content

Trace impurity content

Typical impurity content

© 2024 chempedia.info