Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Result real time

Besides the deviation mentioned above, the main problem with the dynamical information from the MF approximation is that it contains only one positive frequency and so the resulting real-time correlations cannot be damped or describe localizations on one side of the double well due to interference effects, as one expects for real materials. Thus we expect that the frequency distribution is not singly peaked but has a broad distribution, perhaps with several maxima instead of a single peak at an average mean field frequency. In order to study the shape of the frequency distribution we analyze the imaginary-time correlations in more detail. [Pg.104]

The examples described in this chapter illustrate the power and versatility of modem electrochemical devices for detecting explosives. These developments would allow field testing for major explosives to be performed more rapidly, sensitively, inexpensively, and reliably, should greatly facilitate the realization of in-situ detection of explosive compounds. The resulting real-time monitoring capability should thus have a major impact on the way explosive materials are monitored and upon the prevention of terrorist activity. [Pg.141]

As a result, real-time photogrammetry becomes possible, at least for a flat object plane or for given heights of objects such as in a conventional single photograph. [Pg.361]

The resulting real-time spectrum of a one-color three-photon ionization (3PI) is shown in Fig. 3.4 over a range of about 200 ps. The excitation wavelength was A = 833.7 nm (12 040.81 cm ). The quadrupole mass spectrometer was aligned to the maximum ion yield of the isotope of the... [Pg.54]

This study was in real time measured that the reflective echo height of the bonding interface in the solid phase diffused bonding process of carbon steel and titanium using ultrasonic testing method. As a result, the following were made discernment. [Pg.848]

In co-operation with LM Glasfiber, a complete section of a rotor blade was produced with a number of well defined defects in order to perform an initial sensitivity test by means of ultrasound, vibrations techniques and real-time radiography. Based on the results of this initial test it was found that automated ultrasonic inspection was the best suited teclmique. In co-... [Pg.980]

STM has not as yet proved to be easily applicable to the area of ultrafast surface phenomena. Nevertheless, some success has been achieved in the direct observation of dynamic processes with a larger timescale. Kitamura et al [23], using a high-temperature STM to scan single lines repeatedly and to display the results as a time-ver.sn.s-position pseudoimage, were able to follow the difflision of atomic-scale vacancies on a heated Si(OOl) surface in real time. They were able to show that vacancy diffusion proceeds exclusively in one dimension, along the dimer row. [Pg.1681]

Both MD and MC teclmiques evolve a finite-sized molecular configuration forward in time, in a step-by-step fashion. (In this context, MC simulation time has to be interpreted liberally, but there is a broad coimection between real time and simulation time (see [1, chapter 2]).) Connnon features of MD and MC simulation teclmiques are that there are limits on the typical timescales and length scales that can be investigated. The consequences of finite size must be considered both in specifying the molecular mteractions, and in analysing the results. [Pg.2241]

Statistical Control. Statistical quahty control (SQC) is the apphcation of statistical techniques to analytical data. Statistical process control (SPC) is the real-time apphcation of statistics to process or equipment performance. Apphed to QC lab instmmentation or methods, SPC can demonstrate the stabihty and precision of the measurement technique. The SQC of lot data can be used to show the stabihty of the production process. Without such evidence of statistical control, the quahty of the lab data is unknown and can result in production challenging adverse test results. Also, without control, measurement bias cannot be determined and the results derived from different labs cannot be compared (27). [Pg.367]

The objective ia any analytical procedure is to determine the composition of the sample (speciation) and the amounts of different species present (quantification). Spectroscopic techniques can both identify and quantify ia a single measurement. A wide range of compounds can be detected with high specificity, even ia multicomponent mixtures. Many spectroscopic methods are noninvasive, involving no sample collection, pretreatment, or contamination (see Nondestructive evaluation). Because only optical access to the sample is needed, instmments can be remotely situated for environmental and process monitoring (see Analytical METHODS Process control). Spectroscopy provides rapid real-time results, and is easily adaptable to continuous long-term monitoring. Spectra also carry information on sample conditions such as temperature and pressure. [Pg.310]

An ethylene plant contains more than 300 equipment items. Traditionally, operators were trained at the site alongside experienced co-workers. With the advent of modem computers, the plant operation can be simulated on a real-time basis, and the results displayed on monitors (107). Computers are used in a modem plant to control the entire operation, eg, they are used to control the heaters and the recovery section (108). A weU-controUed plant is much more profitable than a poorly controlled plant. For the heaters, a model-based control system is gaining importance (109). Instead of simply controlling the coil outlet temperature (COT), severity is actually controlled. The measurement of severity (either or C H /CH ratio) requires on-line effluent... [Pg.444]

Are real-time monitoring instrument results eorreetly eorrelated to sampling results [OSHA Referenee. 120(h)(1)]... [Pg.265]

It is of course also possible to arrange so that the measurements are made at every point with a fixed instrument and the data transferred to a computer equipped with suitable software to produce the grid map, all in real time. If the graph is also superimposed on a video picture from the measured area, the result will be a video, visualizing the. spatial distribution in real time. [Pg.1116]

The specification development process is a data-driven activity that requires a validated analytical method. The levels of data needed include assay precision, replicate process results (process precision), and real-time stability profiles. A statistical analysis of these data is critical in setting a realistic specification. Most often, aggregation and fragmentation degradation mechanisms are common to protein and peptide therapeutics. Therefore, the SE-HPLC method provides a critical quality parameter that would need to be controlled by a specification limit. [Pg.535]

Spectral Gamma Ray Log. This log makes use of a very efficient tool that records the individual response to the different radioactive minerals. These minerals include potassium-40 and the elements in the uranium family as well as those in the thorium family. The GR spectrum emitted by each element is made up of easily identifiable lines. As the result of the Compton effect, the counter records a continuous spectrum. The presence of potassium, uranium and thorium can be quantitatively evaluated only with the help of a computer that calculates in real time the amounts present. The counter consists of a crystal optically coupled to a photomultiplier. The radiation level is measured in several energy windows. [Pg.973]

Sophisticated programs and codes are now available to interpret all these data in real time. The result is a more efficient and safer drilling process. [Pg.1079]

If further resolution is necessary one-third octave filters can be used but the number of required measurements is most unwieldy. It may be necessary to record the noise onto tape loops for the repeated re-analysis that is necessary. One-third octave filters are commonly used for building acoustics, and narrow-band real-time analysis can be employed. This is the fastest of the methods and is the most suitable for transient noises. Narrow-band analysis uses a VDU to show the graphical results of the fast Fourier transform and can also display octave or one-third octave bar graphs. [Pg.653]

With the single-channel method, data are acquired in series or one channel at a time. Normally, a series of data points are established for each machine-train and data are acquired from each point in a measurement route. While this approach is more than adequate for routine monitoring of relatively simple machines, it is based on the assumption that the machine s dynamics and the resultant vibration profile are constant throughout the entire data acquisition process. This approach hinders the ability to evaluate real-time relationships between measurement points on the machine-train and variations in process parameters such as speed, load, pressure, etc. [Pg.687]


See other pages where Result real time is mentioned: [Pg.458]    [Pg.106]    [Pg.15]    [Pg.458]    [Pg.106]    [Pg.15]    [Pg.446]    [Pg.875]    [Pg.3029]    [Pg.3048]    [Pg.290]    [Pg.291]    [Pg.160]    [Pg.29]    [Pg.195]    [Pg.201]    [Pg.139]    [Pg.352]    [Pg.316]    [Pg.176]    [Pg.796]    [Pg.2435]    [Pg.187]    [Pg.212]    [Pg.74]    [Pg.573]    [Pg.189]    [Pg.893]    [Pg.1117]    [Pg.549]    [Pg.105]    [Pg.269]    [Pg.148]    [Pg.82]    [Pg.82]   
See also in sourсe #XX -- [ Pg.55 , Pg.234 ]




SEARCH



Real-time

Real-time optimization results processing

© 2024 chempedia.info