Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical methods process

The objective ia any analytical procedure is to determine the composition of the sample (speciation) and the amounts of different species present (quantification). Spectroscopic techniques can both identify and quantify ia a single measurement. A wide range of compounds can be detected with high specificity, even ia multicomponent mixtures. Many spectroscopic methods are noninvasive, involving no sample collection, pretreatment, or contamination (see Nondestructive evaluation). Because only optical access to the sample is needed, instmments can be remotely situated for environmental and process monitoring (see Analytical METHODS Process control). Spectroscopy provides rapid real-time results, and is easily adaptable to continuous long-term monitoring. Spectra also carry information on sample conditions such as temperature and pressure. [Pg.310]

Furthermore, molecular analysis is absolutely necessary for the petroleum industry in order to interpret the chemical processes being used and to evaluate the efficiency of treatments whether they be thermal or catalytic. This chapter will therefore present physical analytical methods used in the molecular characterization of petroleum. [Pg.39]

Typically, PIXE measurements are perfonned in a vacuum of around 10 Pa, although they can be perfonned in air with some limitations. Ion currents needed are typically a few nanoamperes and current is nonnally not a limiting factor in applying the teclmique with a particle accelerator. This beam current also nonnally leads to no significant damage to samples in the process of analysis, offering a non-destmctive analytical method sensitive to trace element concentration levels. [Pg.1843]

When designing and evaluating an analytical method, we usually make three separate considerations of experimental error. First, before beginning an analysis, errors associated with each measurement are evaluated to ensure that their cumulative effect will not limit the utility of the analysis. Errors known or believed to affect the result can then be minimized. Second, during the analysis the measurement process is monitored, ensuring that it remains under control. Finally, at the end of the analysis the quality of the measurements and the result are evaluated and compared with the original design criteria. This chapter is an introduction to the sources and evaluation of errors in analytical measurements, the effect of measurement error on the result of an analysis, and the statistical analysis of data. [Pg.53]

Sample Preparation Most analytical methods can be applied to analytes in a liquid or solution state. For this reason a gross sample of a liquid or solution does not need additional processing to bring it into a more suitable form for analysis. [Pg.195]

Suppose we have a sample containing an analyte in a matrix that is incompatible with our analytical method. To determine the analyte s concentration we first separate it from the matrix using, for example, a liquid-liquid extraction. If there are additional analytes, we may need to use additional extractions to isolate them from the analyte s matrix. For a complex mixture of analytes this quickly becomes a tedious process. [Pg.544]

However, chromatographic processes stiH have a considerable appHcabiHty (106) (see Analytical methods). For instance, in small-scale operations, the greater simplicity of the chromatograph may more than compensate economically for the larger adsorbent inventory and desorbent usage. [Pg.302]

Because the higher alcohols are made by a number of processes and from different raw materials, analytical procedures are designed to yield three kinds of information the carbon chain length distribution, or combining weight, of the alcohols present the purity of the material and the presence of minor impurities and contaminants that would interfere with subsequent use of the product. Analytical methods and characterization of alcohols have been summarized (13). [Pg.443]

Another quaHty control problem of multipurpose plants is the clean out for a product change. A test for residual cleaning solvents in the ppm level is a necessity. The best vaHdation of the cleaning process is to develop an analytical method that is able to find the previous product in the new product at a level of not more than 1 ppm. Tests should be mn on at least the first three batches. [Pg.440]

The evaluation phase of industrial hygiene is the process of making measurements on some set of samples which permits a conclusion about the degrees of hazard. Before conducting an evaluation, it is necessary to make a number of choices of what and where to sample, when to sample, how long to sample, how many samples to take, what sampling and analytical methods to use, what exposure criteria to use in the analysis of the data, and how to report the results. These choices as a whole constitute the evaluation plan. The object is to find if one or more workers have an unacceptable probabiUty of being exposed in excess of some estabUshed limit. [Pg.106]

Scientific Apparatus Makers Association 1140 Coimecticut Avenue, NW Washington, D.C. 20036 Standards for analytical instmments, laboratory apparatus, measurement and test instmments, nuclear instmments, optical instmments, process measurement and control, and scientific laboratory furniture and equipment (see Analytical methods). [Pg.23]

Commercially, sulfonation is carried out by the classic method with sulfuric acid. Modem reactors are glass-lined older equipment was made from cast iron or coated with enamel Processes often use chlorosulfonic acid or sulfur trioxide to minimi2e the need of excess sulfuric acid. Improved analytical methods have contributed to the success of process optimi2ation (9—12). [Pg.489]

Analytical methods aie utilised by all branches of the chemical iadustry. Sometimes the goal is the quaUtative deterniiaation of elemental and molecular constituents of a selected specimen of matter othertimes the goal is the quantitative measurement of the fractional distribution of those constituents and sometimes it is to monitor a process stream or a static system. Information concerning the various iadividual analytical methods may be found ia separate articles dispersed alphabetically throughout the Eniyclopedia. The articles ate iatroductions to topics each of which is the subject of numerous books and other pubhcations. [Pg.393]

A sohd waste is considered hazardous if it is either a Hsted waste or a characteristic waste. Listed wastes include a Hst of specific processes that generate a waste and a Hst of discarded commercial chemical products. There are four hazardous waste characteristics ignitabiHty, corrosivity, reactivity, and toxicity. The last refers to the leachabiHty of a waste and the resultant toxicity in the groundwater using the analytical method referred to as toxicity characteristic leaching procedure (TCLP). A Hst of substances included under TCLP is shown in Table 1. [Pg.78]

Mixtures can be identified with the help of computer software that subtracts the spectra of pure compounds from that of the sample. For complex mixtures, fractionation may be needed as part of the analysis. Commercial instmments are available that combine ftir, as a detector, with a separation technique such as gas chromatography (gc), high performance Hquid chromatography (hplc), or supercritical fluid chromatography (96,97). Instmments such as gc/ftir are often termed hyphenated instmments (98). Pyrolyzer (99) and thermogravimetric analysis (tga) instmmentation can also be combined with ftir for monitoring pyrolysis and oxidation processes (100) (see Analytical methods, hyphenated instruments). [Pg.315]

Analytical Methods. Most of the analytical and testing methods used for ethyl ether are conventional laboratory methods. Ethyl ether that is to be used for anesthetic purposes or in processes that involve heating or distiHation must be peroxide-free, and should pass the USP standard test with potassium iodide. This test detects approximately 0.001% peroxide as hydrogen peroxide. [Pg.427]

The aim of this work is to analyse processes for determination and removal (or reducing) greenhouse gases (GHG NO, SO, and CO) from air and make the comparative study of GHG emission and with production of electricity. Among various analytical methods green analytical techniques were analysed and tested for GHC determination. [Pg.229]

Numerical simulations are designed to solve, for the material body in question, the system of equations expressing the fundamental laws of physics to which the dynamic response of the body must conform. The detail provided by such first-principles solutions can often be used to develop simplified methods for predicting the outcome of physical processes. These simplified analytic techniques have the virtue of calculational efficiency and are, therefore, preferable to numerical simulations for parameter sensitivity studies. Typically, rather restrictive assumptions are made on the bounds of material response in order to simplify the problem and make it tractable to analytic methods of solution. Thus, analytic methods lack the generality of numerical simulations and care must be taken to apply them only to problems where the assumptions on which they are based will be valid. [Pg.324]

Simplified environmental fate estimation procedures are based on the predominant mechanisms of transport within each medium, and they generally disregard intermedia transfer or transformation processes. In general, they produce conservative estimates (i.e., reasonable upper bounds) for final ambient concentrations and the extent of hazardous substance migration. However, caution should be taken to avoid using inappropriate analytical methods that underestimate or overlook significant pathways that affect human health. [Pg.230]

Since non-ideal gases do not obey the ideal gas law (i.e., PV = nRT), corrections for nonideality must be made using an equation of state such as the Van der Waals or Redlich-Kwong equations. This process involves complex analytical expressions. Another method for a nonideal gas situation is the use of the compressibility factor Z, where Z equals PV/nRT. Of the analytical methods available for calculation of Z, the most compact one is obtained from the Redlich-Kwong equation of state. The working equations are listed below ... [Pg.522]


See other pages where Analytical methods process is mentioned: [Pg.310]    [Pg.67]    [Pg.133]    [Pg.310]    [Pg.67]    [Pg.133]    [Pg.80]    [Pg.8]    [Pg.668]    [Pg.687]    [Pg.770]    [Pg.492]    [Pg.54]    [Pg.95]    [Pg.331]    [Pg.515]    [Pg.201]    [Pg.32]    [Pg.146]    [Pg.399]    [Pg.394]    [Pg.266]    [Pg.348]    [Pg.378]    [Pg.88]    [Pg.393]    [Pg.418]    [Pg.418]    [Pg.153]    [Pg.451]    [Pg.536]    [Pg.348]    [Pg.314]   
See also in sourсe #XX -- [ Pg.90 , Pg.304 , Pg.305 , Pg.727 ]




SEARCH



Analytical Methods Available for Process Monitoring

Analytical method transfer process

Analytical method transfer process documentation

Analytical methods about manufacturing process

Analytical process

Analytics process

Method process

Microbial processes analytical methods

Process Raman spectroscopy, analytical method

Process Raman spectroscopy, analytical method Applications

Process analytic

Process chromatography, analytical method

Process chromatography, analytical method Applications

Process mass spectrometry, analytical method

Process optimization analytical methods

Process spectroscopy, analytical method

Process spectroscopy, analytical method Applications

Processed method

Processing methods

© 2024 chempedia.info