Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical methods infrared spectroscopy

As described in Section 3.1, Baier et al. (1974) have used a machined germanium prism to sample surface organic monolayers in the manner developed earlier by Blodgett (1934,1935) for fatty acid films. The basis of their analytical method, infrared spectroscopy by the technique of internal reflections inside the machined prisms, is only qualitative but serves very well to examine the chemical nature of the surface organics. It is well known that when an internal reflection prism made of a material with a sufficiently high index of refiraction such as germanium is used, the internal reflection IR spectrum obtained suffers no band distortion or band shift when compared to conventional transmission spectra of the same substance (Barr and Flournoy, 1969). [Pg.290]

Wetzel, D.L.B., Analytical near infrared spectroscopy, in Instrumental Methods In Food and Beverage Analysis, Wetzel, D.L.B. and Charalambous, G., Eds., Elsevier, Amsterdam, 1998. [Pg.527]

UV detection is quite common, but in many cases it is not sufficiently selective even combined with chromatography, it often leads to false-positive or falsenegative results. For this reason many other types of detectors are used in analytical chemistry, to increase selectivity, specificity, or sensitivity. To identify or determine the molecular structure, the use of spectroscopic techniques is common. Mass spectrometry, the main topic of this book, is among the most commonly used and highest performance methods. Infrared spectroscopy (IR) and NMR are also often used, although the relatively low sensitivity of NMR restricts its use in the biomedical field. [Pg.13]

Many methods, both chemical and physical, have been used for identification and characterization of polymers. In polymer analysis, as in many other types of analysis, the return in information for a given effort is greater for infrared spectroscopy than for almost any other single analytical method. Infrared not only serves to identify a commercial polymer or copolymer, but often yields both qualitative and quantitative information as to additives, plasticizers, fillers, and cross-linking agents. [Pg.17]

The focus of this chapter is photon spectroscopy, using ultraviolet, visible, and infrared radiation. Because these techniques use a common set of optical devices for dispersing and focusing the radiation, they often are identified as optical spectroscopies. For convenience we will usually use the simpler term spectroscopy in place of photon spectroscopy or optical spectroscopy however, it should be understood that we are considering only a limited part of a much broader area of analytical methods. Before we examine specific spectroscopic methods, however, we first review the properties of electromagnetic radiation. [Pg.369]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

There are a variety of analytical methods commonly used for the characterization of neat soap and bar soaps. Many of these methods have been pubUshed as official methods by the American Oil Chemists Society (29). Additionally, many analysts choose United States Pharmacopoeia (USP), British Pharmacopoeia (BP), or Pood Chemical Codex (FCC) methods. These methods tend to be colorimetric, potentiometric, or titrametric procedures. However, a variety of instmmental techniques are also frequendy utilized, eg, gas chromatography, high performance Hquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry. [Pg.159]

The field of steroid analysis includes identification of steroids in biological samples, analysis of pharmaceutical formulations, and elucidation of steroid stmctures. Many different analytical methods, such as ultraviolet (uv) spectroscopy, infrared (ir) spectroscopy, nuclear magnetic resonance (nmr) spectroscopy, x-ray crystallography, and mass spectroscopy, are used for steroid analysis. The constant development of these analytical techniques has stimulated the advancement of steroid analysis. [Pg.448]

Infrared Spectroscopy (ir). Infrared curves are used to identify the chemical functionality of waxes. Petroleum waxes with only hydrocarbon functionality show slight differences based on crystallinity, while vegetable and insect waxes contain hydrocarbons, carboxyflc acids, alcohols, and esters. The ir curves are typically used in combination with other analytical methods such as dsc or gc/gpc to characterize waxes. [Pg.318]

The modern electronic industry has played a very important role in the development of instrumentation based on physical-analytical methods As a result, a rapid boom in the fields of infrared, nuclear magnetic resonance (NMR), Raman, and mass spectroscopy and vapor-phase (or gas-liquid) chromatography has been observed. Instruments for these methods have become indispensable tools in the analytical treatment of fluonnated mixtures, complexes, and compounds The detailed applications of the instrumentation are covered later in this chapter. [Pg.1023]

Semiquantitative Determination of Chimassorb 944 in Low Density Polyethylene Polymer by Infrared Spectroscopy. Analytical Method No. C-259, Ciba-Geigy, Ardsley, NY (1981). [Pg.295]

Capillary electrophoresis has also been combined with other analytical methods like mass spectrometry, NMR, Raman, and infrared spectroscopy in order to combine the separation speed, high resolving power and minimum sample consumption of capillary electrophoresis with the selectivity and structural information provided by the other techniques [6]. [Pg.241]

In the mid-IR, routine infrared spectroscopy nowadays almost exclusively uses Fourier-transform (FT) spectrometers. This principle is a standard method in modem analytical chemistry45. Although some efforts have been made to design ultra-compact FT-IR spectrometers for use under real-world conditions, standard systems are still too bulky for many applications. A new approach is the use of micro-fabrication techniques. As an example for this technology, a miniature single-pass Fourier transform spectrometer integrated on a 10 x 5 cm optical bench has been demonstrated to be feasible. Based upon a classical Michelson interferometer design, all... [Pg.142]

ABSTRACT The aim of this study was to test portable infrared spectroscopy for non-destructive analysis of ancient construction mortar. Mortar samples from the House of the Vestals, in Pompeii, Italy, were initially examined with traditional analytical techniques, including X-ray fluorescence, X-ray diffraction and thin section analysis. These techniques were used to establish mineralogical and chemical profiles of the samples and to verify the results of experimental field methods. Results showed the lime-based binder was composed of calcite, and the volcanic sand aggregate contained clinopyroxene, plagioclase, sanidine and olivine crystals. [Pg.303]


See other pages where Analytical methods infrared spectroscopy is mentioned: [Pg.20]    [Pg.156]    [Pg.143]    [Pg.14]    [Pg.471]    [Pg.236]    [Pg.1136]    [Pg.8]    [Pg.1]    [Pg.399]    [Pg.486]    [Pg.106]    [Pg.195]    [Pg.398]    [Pg.52]    [Pg.330]    [Pg.241]    [Pg.381]    [Pg.1136]    [Pg.173]    [Pg.734]    [Pg.59]    [Pg.116]    [Pg.181]    [Pg.528]    [Pg.784]    [Pg.118]    [Pg.65]    [Pg.150]    [Pg.289]    [Pg.911]    [Pg.66]    [Pg.127]    [Pg.46]   
See also in sourсe #XX -- [ Pg.210 , Pg.212 ]




SEARCH



Analytical spectroscopies

Infrared analytical methods

Infrared spectroscopy method

Near-infrared spectroscopy reference analytical method

Spectroscopy analytical methods

Spectroscopy method

© 2024 chempedia.info