Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission spectroscopy, analytical method

The most common analytical procedures for measuring cadmium concentrations in biological samples use the methods of atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES). Methods of AAS commonly used for cadmium measurement are flame atomic absorption spectroscopy (FAAS) and graphite furnace (or electrothermal) atomic absorption spectroscopy (GFAAS or ETAAS). A method for the direct determination of cadmium in solid biological matrices by slurry sampling ETAAS has been described (Taylor et al., 2000). [Pg.32]

Amongst the wide range of sample introduction methods available for atomic emission spectroscopy, chromatographic methods are most popular as they transform a complex mixture into a time-resolved separated analyte stream [49]. [Pg.491]

There are many journals that publish articles on atomic emission spectroscopy. Analytical Chemistry, Applied Spectroscopy, Spectrochimica Acta Part B, and The Analyst publish articles on atomic emission spectroscopy as well as other analytical methods. The Journal of Analytical Atomic Spectrometry is a more focused journal, as the name implies. Applications articles that use atomic emission spectroscopy for analysis of specific materials may be found in journals related to the field of application, such as geology, agriculture, food science, pharmaceutical science, polymer science, and the like. [Pg.582]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

Analysis. Lithium can be detected by the strong orange-red emission of light in a flame. Emission spectroscopy allows very accurate determination of lithium and is the most commonly used analytical procedure. The red emission line at 670.8 nm is usually used for analytical determinations although the orange emission line at 610.3 nm is also strong. Numerous other methods for lithium determinations have been reviewed (49,50). [Pg.224]

The predorninant method for the analysis of alurninum-base alloys is spark source emission spectroscopy. SoHd metal samples are sparked direcdy, simultaneously eroding the metal surface, vaporizing the metal, and exciting the atomic vapor to emit light ia proportion to the amount of material present. Standard spark emission analytical techniques are described in ASTM ElOl, E607, E1251 and E716 (36). A wide variety of weU-characterized soHd reference materials are available from major aluminum producers for instmment caUbration. [Pg.105]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

Emission spectroscopy is the analysis, usually for elemental composition, of the spectmm emitted by a sample at high temperature, or that has been excited by an electric spark or laser. The direct detection and spectroscopic analysis of ambient thermal emission, usually ia the iafrared or microwave regioas, without active excitatioa, is oftea termed radiometry. la emission methods the sigaal iateasity is directiy proportioaal to the amouat of analyte present. [Pg.310]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

Until the last War, variants of optical emission spectroscopy ( spectrometry when the technique became quantitative) were the principal supplement to wet chemical analysis. In fact, university metallurgy departments routinely employed resident analytical chemists who were primarily experts in wet methods, qualitative and quantitative, and undergraduates received an elementary grounding in these techniques. This has completely vanished now. [Pg.234]

When the problem has been defined and needed background information has been studied, it is time to consider which analytical methods will provide the data you need to solve the problem. In selecting techniques, you can refer back to the other chapters in this book. For example, if you want to measure the three heavy metals (Co, Fe, and Ni) that were suspect in the Bulging Drum Problem, you might immediately think of atomic absorption or inductively coupled plasma atomic emission spectroscopies and reread Chapter 8 of this book. How would you choose between them Which would be more accurate More precise Does your lab have both instruments Are they both in working order What if you have neither of them What sample preparation would be needed ... [Pg.814]

In 1956 Boyd and Larson thoroughly sought for technetium in various samples using analytical methods of high sensitivity such as neutron activation, mass spectrometry, emission spectroscopy, spectrophotometry, and polarography. Not one of their numerous concentrates revealed traces of natural technetium. It now seems clear that primordial technetium does not exist in nature. [Pg.112]

The advantages of solvent extraction in combination with atomic absorption apply equally well for flame emission spectroscopy. In addition, the latter analytical method often requires separation of the analyte from a large excess of other components. This may be achieved either by extracting... [Pg.569]

Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union... Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union...
Above mentioned examples clearly show that if multivariate data processing methods are applicable, analytical information can be derived with a minimal amount of pre-information and a foreseeing of a maximum of problems. When the sampled object is homogenous, multivariate methods are only applicable when the analytical method itself produces multivariate signals. This is the case when several signals (e.g. spectra) are obtained for the sample as a function of another variable (e.g. time, excitation wavelength). For e mple in GC-MS, a mass spectrum is m sured of the eluents every. 1 a 1 second. In excitation-emission spectroscopy, spectra are measured at several excitation-wavelengths. The potentials of the application of multivariate... [Pg.25]

The most frequently applied analytical methods used for characterizing bulk and layered systems (wafers and layers for microelectronics see the example in the schematic on the right-hand side) are summarized in Figure 9.4. Besides mass spectrometric techniques there are a multitude of alternative powerful analytical techniques for characterizing such multi-layered systems. The analytical methods used for determining trace and ultratrace elements in, for example, high purity materials for microelectronic applications include AAS (atomic absorption spectrometry), XRF (X-ray fluorescence analysis), ICP-OES (optical emission spectroscopy with inductively coupled plasma), NAA (neutron activation analysis) and others. For the characterization of layered systems or for the determination of surface contamination, XPS (X-ray photon electron spectroscopy), SEM-EDX (secondary electron microscopy combined with energy disperse X-ray analysis) and... [Pg.259]

Inductively Coupled and Microwave Induced Plasma Sources for Mass Spectrometry 4 Industrial Analysis with Vibrational Spectroscopy 5 Ionization Methods in Organic Mass Spectrometry 6 Quantitative Millimetre Wavelength Spectrometry 7 Glow Discharge Optical Emission Spectroscopy A Practical Guide 8 Chemometrics in Analytical Spectroscopy, 2nd Edition 9 Raman Spectroscopy in Archaeology and Art History 10 Basic Chemometric Techniques in Atomic Spectroscopy... [Pg.321]

Many analytes listed in Table 1 have been measured spectrophotometri-cally in seawater for some time, including many metal ions and some gases, although spectrophotometry is the preferred method for only a minority. Some analytes, like alkanes, are spectrophotometrically silent, or do not form colored complexes with other reagents. Similarly, individual nuclides cannot be distinguished by classical spectrophotometry, and many of the other analytes, such as halogenated pesticides and metal alkyls, are more easily determined by other methods, such as gas chromatography with electron capture detection, or emission spectroscopy. Indeed, many of the analytes, such as zinc or copper, are present at trace levels and are not measurable by spectrophotometry. [Pg.56]

Since the mid-1960s, a variety of analytical chemistry techniques have been used to characterize obsidian sources and artifacts for provenance research (4, 32-36). The most common of these methods include optical emission spectroscopy (OES), atomic absorption spectroscopy (AAS), particle-induced X-ray emission spectroscopy (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence spectroscopy (XRF), and neutron activation analysis (NAA). When selecting a method of analysis for obsidian, one must consider accuracy, precision, cost, promptness of results, existence of comparative data, and availability. Most of the above-mentioned techniques are capable of determining a number of elements, but some of the methods are more labor-intensive, more destructive, and less precise than others. The two methods with the longest and most successful histoty of success for obsidian provenance research are XRF and NAA. [Pg.527]

Trace levels (10 to 10 g/g of sample) of silver can be accurately determined in biological samples by several different analytical techniques, provided that the analyst is well acquainted with the specific problems associated with the chosen method. These methods include high frequency plasma torch-atomic emission spectroscopy (HFP-AES), neutron activation analysis (NAA), graphite furnace (flameless) atomic absorption spectroscopy (GFAAS), flame atomic absorption spectroscopy (FAAS), and micro-cup atomic absorption spectroscopy (MCAAS). [Pg.111]

Undoubtedly, while the direct method is more relevant, because the analyte activity in water plasma is actually measured, the reporting on blood sodium, potassium and chloride in terms of concentration in plasma is preferred by medical professionals, whatever method of measurement is used. This is justified by the fact that before ISEs had been invented, sodium, potassium and chloride were all determined by indirect methods, with flame emission spectroscopy (FES) for Na+ and K+, and coulometry for Cl. ... [Pg.19]

A number of analytical methods were developed for determination of elemental mercury. The methods are reviewed in Refs. [1-4]. They include traditional analytical techniques, such as atomic adsorption spectroscopy (AAS), atomic fluorescence spectroscopy (AFS), and atomic emission spectroscopy (AES). The AAS is based on measurements of optical adsorption at 253.7 or 184.9 nm. Typical value of the detection limit without pre-concentration step is over 1 pg/l. The AEF is much more sensitive and allows one to detect less than 0.1ng/l of mercury... [Pg.235]


See other pages where Emission spectroscopy, analytical method is mentioned: [Pg.612]    [Pg.323]    [Pg.364]    [Pg.53]    [Pg.448]    [Pg.455]    [Pg.197]    [Pg.266]    [Pg.8]    [Pg.127]    [Pg.7]    [Pg.406]    [Pg.234]    [Pg.179]    [Pg.206]    [Pg.113]    [Pg.546]    [Pg.285]    [Pg.44]    [Pg.219]    [Pg.127]    [Pg.258]    [Pg.99]    [Pg.152]    [Pg.224]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Analyte emission

Analytical spectroscopies

Emission spectroscopy)

Spectroscopy analytical methods

Spectroscopy method

© 2024 chempedia.info