Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy, analytical method

Near-infrared (NIR) absorption spectroscopy is another technique of importance to the context of the development of analytical Raman spectroscopy. The method is generally referred to as NIR, despite the unfortunate confusion with NIR-Raman. NIR absorption is based on overtone and combination bands of mid-IR transitions, as shown in Figure 1.1. Such transitions are quantum mechanically forbidden and significantly weaker than mid-IR fundamentals. However, the higher energy photons involved in NIR absorption are transmitted by fiber optics and common optical materials, and the method has... [Pg.6]

S.E.J. Bell, A. Stewart, Quantitative SERS methods, in Surface Enhanced Raman Spectroscopy Analytical, Biophysical and Life Science Applications, ed. by S. Schliicker (Wiley, Weinheim, 2011), pp. 71-86... [Pg.87]

Biosensors (qv) and DNA probes ate relatively new to the field of diagnostic reagents. Additionally, a neat-infrared (nit) monitoring method (see Infrared TECHNOLOGY AND RAMAN SPECTROSCOPY), a teagenfless, noninvasive system, is under investigation. However, prospects for a nit detection method for glucose and other analytes ate uncertain. [Pg.44]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

The modern electronic industry has played a very important role in the development of instrumentation based on physical-analytical methods As a result, a rapid boom in the fields of infrared, nuclear magnetic resonance (NMR), Raman, and mass spectroscopy and vapor-phase (or gas-liquid) chromatography has been observed. Instruments for these methods have become indispensable tools in the analytical treatment of fluonnated mixtures, complexes, and compounds The detailed applications of the instrumentation are covered later in this chapter. [Pg.1023]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

Cariati, F. and S. Bruni (2000), Raman spectroscopy, in Ciliberto, E. and G. Spoto (eds.), Modern Analytical Methods in Art and Archaeology, Chemical Analysis Series, Vol. 155, Wiley, New York, pp. 255-275. [Pg.564]

With recent developments in analytical instrumentation these criteria are being increasingly fulfilled by physicochemical spectroscopic approaches, often referred to as whole-organism fingerprinting methods.910 Such methods involve the concurrent measurement of large numbers of spectral characters that together reflect the overall cell composition. Examples of the most popular methods used in the 20th century include pyrolysis mass spectrometry (PyMS),11,12 Fourier transform-infrared spectrometry (FT-IR), and UV resonance Raman spectroscopy.16,17 The PyMS technique... [Pg.322]

Capillary electrophoresis has also been combined with other analytical methods like mass spectrometry, NMR, Raman, and infrared spectroscopy in order to combine the separation speed, high resolving power and minimum sample consumption of capillary electrophoresis with the selectivity and structural information provided by the other techniques [6]. [Pg.241]

However, the question of when exactly the first life forms emerged is by no means settled the date set by Schopf, 3.465x 109 years, is now in doubt. Schopf has recently introduced a new, ultramodern analytical method, laser Raman spectroscopy, as a highly sensitive technique for the study of microscopic fossil material. With the help of this method, it is possible to determine the chemical composition and also the two-dimensional structure of fossils (Kudryavtsev et al., 2001). [Pg.262]

Identifying pharmaceuticals, whether APIs or excipients used to manufacture products, and the end products themselves is among the routine tests needed to control pharmaceutical manufacturing processes. Pharmacopoeias have compiled a wide range of analytical methods for the identification of pharmaceutical APIs and usually several tests for a product are recommended. The process can be labor-intensive and time-consuming with these conventional methods. This has raised the need for alternative, faster methods also ensuring reliable identification. Of the seven spectroscopic techniques reviewed in this book, IR and Raman spectroscopy are suitable for the unequivocal identification of pharmaceuticals as their spectra are compound-specific no two compounds other than pairs of enantiomers or oligomers possess the same IR... [Pg.466]

The oxidation rate of methanol in SCW and the subsequent production and destruction of the primary intermediate, formaldehyde, has been investigated using Raman spectroscopy as an in situ analytical method. Effluent samples were also examined using gas chromatography. An elementary reaction mechanism, which reproduces accurately the quantitative features of methanol oxidation and formaldehyde production, is used to identify key rate controlling reactions during the induction period and the transition to the primary oxidation path (Rice et al., 1996). [Pg.167]

Inductively Coupled and Microwave Induced Plasma Sources for Mass Spectrometry 4 Industrial Analysis with Vibrational Spectroscopy 5 Ionization Methods in Organic Mass Spectrometry 6 Quantitative Millimetre Wavelength Spectrometry 7 Glow Discharge Optical Emission Spectroscopy A Practical Guide 8 Chemometrics in Analytical Spectroscopy, 2nd Edition 9 Raman Spectroscopy in Archaeology and Art History 10 Basic Chemometric Techniques in Atomic Spectroscopy... [Pg.321]


See other pages where Raman spectroscopy, analytical method is mentioned: [Pg.47]    [Pg.1130]    [Pg.475]    [Pg.332]    [Pg.1]    [Pg.509]    [Pg.52]    [Pg.442]    [Pg.456]    [Pg.97]    [Pg.20]    [Pg.740]    [Pg.118]    [Pg.66]    [Pg.268]    [Pg.156]    [Pg.20]    [Pg.69]    [Pg.335]    [Pg.111]    [Pg.4]    [Pg.420]    [Pg.95]    [Pg.17]    [Pg.254]    [Pg.64]    [Pg.179]    [Pg.89]    [Pg.624]    [Pg.140]    [Pg.261]    [Pg.39]    [Pg.102]    [Pg.624]    [Pg.385]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Analytical spectroscopies

Method Raman spectroscopy

Process Raman spectroscopy, analytical method

Process Raman spectroscopy, analytical method Applications

Raman spectroscopy, analytical method Applications

Spectroscopy analytical methods

Spectroscopy method

© 2024 chempedia.info