Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium thiosulfate, oxidation

The pH must be kept at 7.0—7.2 for this method to be quantitative and to give a stable end poiut. This condition is easily met by addition of soHd sodium bicarbonate to neutralize the HI formed. With starch as iudicator and an appropriate standardized iodine solution, this method is appHcable to both concentrated and dilute (to ca 50 ppm) hydraziue solutious. The iodiue solutiou is best standardized usiug mouohydraziuium sulfate or sodium thiosulfate. Using an iodide-selective electrode, low levels down to the ppb range are detectable (see Electro analytical techniques) (141,142). Potassium iodate (143,144), bromate (145), and permanganate (146) have also been employed as oxidants. [Pg.287]

Iodide ion, a moderately effective reducing agent, is used extensively for the deterrnination of oxidants. In such appHcations, the iodine Hberated by reaction between the analyte and the unmeasured excess of potassium iodide is ordinarily titrated with a standard solution of sodium thiosulfate. The reaction is as foHows ... [Pg.364]

The hberated iodine is measured spectrometricaHy or titrated with Standard sodium thiosulfate solution (I2 +28203 — 2 1 VS Og following acidification with sulfuric acid buffers are sometimes employed. The method requires measurement of the total gas volume used in the procedure. The presence of other oxidants, such as H2O2 and NO, can interfere with the analysis. The analysis is also technique-sensitive, since it can be affected by a number of variables, including temperature, time, pH, iodide concentration, sampling techniques, etc (140). A detailed procedure is given in Reference 141. [Pg.503]

Iodized Salt. Iodized table salt has been used to provide supplemental iodine to the U.S. population since 1924, when producers, in cooperation with the Michigan State Medical Society (24), began a voluntary program of salt iodization in Michigan that ultimately led to the elimination of iodine deficiency in the United States. More than 50% of the table salt sold in the United States is iodized. Potassium iodide in table salt at levels of 0.006% to 0.01% KI is one of two sources of iodine for food-grade salt approved by the U.S. Food and Dmg Administration. The other, cuprous iodide, is not used by U.S. salt producers. Iodine may be added to a food so that the daily intake does not exceed 225 p.g for adults and children over four years of age. Potassium iodide is unstable under conditions of extreme moisture and temperature, particularly in an acid environment. Sodium carbonate or sodium bicarbonate is added to increase alkalinity, and sodium thiosulfate or dextrose is added to stabilize potassium iodide. Without a stabilizer, potassium iodide is oxidized to iodine and lost by volatilization from the product. Potassium iodate, far more stable than potassium iodide, is widely used in other parts of the world, but is not approved for use in the United States. [Pg.186]

Aqueous sodium thiosulfate solutions ate neutral. Under neutral or slightly acidic conditions, decomposition produces sulfite and sulfur. In the presence of air, alkaline solutions decompose to sulfate and sulfide. Dilute solutions can be stabilized by small amounts of sodium sulfite, sodium carbonate, or caustic, and by storage at low temperatures away from air and light. Oxidation is inhibited by Hgl2 (10 Ppm) amyl alcohol (1%), chloroform (0.1%), borax (0.05%), or sodium benzoate (0.1%). [Pg.29]

Manufacture. Sodium thiosulfate has been produced commercially by the air oxidation of sulfides, hydrosulfides, and polysulfides. [Pg.29]

Sodium thiosulfate is determined by titration with standard iodine solution (37). Sulfate and sulfite are determined together by comparison of the turbidity produced when barium chloride is added after the iodine oxidation with the turbidity produced by a known quantity of sulfate iu the same volume of solution. The absence of sulfide is iadicated when the addition of alkaline lead acetate produces no color within one minute. [Pg.30]

Analytical and Test Methods. Analysis and test methods are similar to those for sodium thiosulfate. Sulfite is determined by an indirect method based on the titration of the acid Hberated when both the sulfite and thiosulfate are oxidized with iodine solution (69). [Pg.31]

Gold thiosulfate complexes of the form Na2[Au(S202)2] 2H20 [19153-98-1] are prepared by addition of gold trichloride to concentrated sodium thiosulfate solution (89). The gold is completely reduced and some thiosulfate is oxidized to tetrathionate. This complex has been used in the treatment of rheumatoid arthritis. [Pg.32]

Use of a pH buffer of 8—9 has been suggested as a substitute for the pH 7 buffer for more accurate analysis. Sodium thiosulfate [10102-17-7] Na2S202, or phenylarsine oxide [637-03-6] C H AsO, are the typical titrants. [Pg.485]

Isothiazole itself is best prepared by the reaction between propynal, ammonia and sodium thiosulfate (see Section 4.17.9.3). A wide range of substituted mononuclear isothiazoles can be obtained by oxidative cyclization of y-iminothiols and related compounds (see Section 4.17.9.1.1). Substituents at the 3-position need to be in place before cyclization, but 4-substituents are readily introduced by electrophilic reagents (see Section 4.17.6.3), and 5-substituents via lithiation (see Section 4.17.6.4). [Pg.173]

The recovered dg-dimethyl sulfoxide may be recycled to prepare additional deuteriomethyl iodide or purified for use as a reagent by gentle warming with a little solid sodium thiosulfate followed by distillation from barium oxide. Both products show 99% deuteration. ... [Pg.215]

Sodium trithionate, Na2Si06, can be made by oxidizing sodium thiosulfate with cooled hydrogen peroxide solution... [Pg.717]

Reaction of 2-pyrrolylbenzoic acid derivative 122 with PCI5 and subsequent reaction with diazomethane gave the diazoacetophenone 123 that upon treatment with silver oxide, sodium carbonate and sodium thiosulfate afforded acetic acid derivative 124, cyclization with acetic anhydride gave 125 (91JHC77) (Scheme 24). [Pg.90]

Hydriodic acid Diiodoethane Diiodopropane In an alternative method the diiodoalkanes are allowed to decompose, yielding iodine which may be titrated with sodium thiosulfate to obtain total alkylene oxide content [14]. Yield of diiodopropane lower than that of diiodoethane [13]. [Pg.767]

The amount of sodium hypochlorite in a bleach solution can be determined by using a given volume of bleach to oxidize excess iodide ion to iodine CIO- is reduced to Cl-. The amount of iodine produced by the redox reaction is determined by titration with sodium thiosulfate, Na2S203 I2 is reduced to I-. The sodium thiosulfate is oxidized to sodium tetrathionate, Na2S406. In this analysis, potassium iodide was added in excess to 5.00 ml of bleach d = 1.00 g/cm3). If 25.00 mL of 0.0700 MNa2S203 was required to reduce all the iodine produced by the bleach back to iodide, what is the mass percent of NaCIO in the bleach ... [Pg.577]

Iodine was determined by an iodometric titration adapted from White and Secor.(3) Instead of the normal Carius combustion, iodide was separated from the samples either by slurrying in 6M NaOH, or by stirring the sample with liquid sodium-potassium (NaK) alloy, followed by dissolving excess NaK in ethanol. Precipitated plutonium hydroxides were filtered. Iodine was determined in the filtrate by bromine oxidation to iodate in an acetate buffer solution, destruction of the excess bromine with formic acid, acidifying with SO, addition of excess KI solution, and titrating the liberated iodine with standard sodium thiosulfate. The precision of the iodine determination is estimated to be about 5% of the measured value, principally due to incomplete extraction of iodine from the sample. [Pg.47]

A 250-mL, two-necked, round-bottomed flask equipped with a magnetic stirbar, thermometer, and a reflux condenser fitted with a rubber septum and balloon of argon is charged with a solution of methyltrioxorhenium (MTO) (0.013 g, 0.05 mmol, 0.1% mol equiv) in 100 mL of methanol (Note 1). Urea hydrogen peroxide (UHP) (14.3 g, 152 mmol) is added (Notes 1, 2, 3, 4), the flask is cooled in an ice bath, and dibenzylamine (9.7 mL, 50.7 mmol) is then added dropwise via syringe over 10 min (Notes 1, 5). After completion of the addition, the ice bath is removed and the mixture is stirred at room temperature (Note 6). A white precipitate forms after approximately 5 min (Note 7) and the yellow color disappears within 20 min (Note 8). Another four portions of MTO (0.1% mol equiv, 0.013 g each) are added at 30-min intervals (2.5 hr total reaction time). After each addition, the reaction mixture develops a yellow color, which then disappears only after the last addition does the mixture remain pale yellow (Note 9). The reaction flask is cooled in an ice bath and solid sodium thiosulfate pentahydrate (12.6 g, 50.7 mmol) is added in portions over 20 min in order to destroy excess hydrogen peroxide (Note 10). The cooled solution is stirred for 1 hr further, at which point a KI paper assay indicates that the excess oxidant has been completely consumed. The solution is decanted into a 500-mL flask to remove small amounts of undissolved thiosulfate. The solid is washed with 50 mL of MeOH and the methanol extract is added to the reaction solution which is then concentrated under reduced pressure by rotary evaporation. Dichloromethane (250 mL) is added to the residue and the urea is removed by filtration through cotton and celite. Concentration of the filtrate affords 10.3 g (97%) of the nitrone as a yellow solid (Note 11). [Pg.107]

Oxidation reactions are generally problematic because of their large heat release. For instance, the oxidation reaction of sodium thiosulfate, Na2 S2O3, by hydrogen peroxide, H2O2, for which the stoichiometric scheme is... [Pg.278]

Carboxymethylcellulose, polyethylene glycol Combination of a cellulose ether with clay Amide-modified carboxyl-containing polysaccharide Sodium aluminate and magnesium oxide Thermally stable hydroxyethylcellulose 30% ammonium or sodium thiosulfate and 20% hydroxyethylcellulose (HEC) Acrylic acid copolymer and oxyalkylene with hydrophobic group Copolymers acrylamide-acrylate and vinyl sulfonate-vinylamide Cationic polygalactomannans and anionic xanthan gum Copolymer from vinyl urethanes and acrylic acid or alkyl acrylates 2-Nitroalkyl ether-modified starch Polymer of glucuronic acid... [Pg.12]

Hypochlorite Salts., Hypochlorites are powerful oxidants and therefore may degrade polymeric chains. They are often used in combination with tertiary amines [1846]. The combination of the salt and the tertiary amine increases the reaction rate more than the application of a hypochlorite alone. A tertiary amino galactomannan may serve as an amine source [1062]. This also serves as a thickener before breaking. Hypochlorites are also effective for breaking stabilized fluids [1817]. Sodium thiosulfate has been proposed as a stabilizer for high-temperature applications. [Pg.260]

At the end of this period the solution was removed from the condenser while still hot and titrated immediately with 0.002500 N sodium thiosulfate before any appreciable oxygen could be absorbed and oxidize iodide ion to triiodide ion. The disappearance of the yellow color of triiodide ion against a white background was used for the end point. These solutions usually had a slight brown tint at the end point, which was assumed to be organic matter distilled over from the soil. Accordingly, the blank was usually titrated first and its final color was used as a standard end point color for the other three solutions run with it. [Pg.204]

Stablizers. Stabilizers are ingredients added to a formula to decrease the rate of decomposition of the active ingredients. Antioxidants are the principal stabilizers added to some ophthalmic solutions, primarily those containing epinephrine and other oxidizable drugs. Sodium bisulfite or metabisulfite are used in concentration up to 0.3% in epinephrine hydrochloride and bitartrate solutions. Epinephrine borate solutions have a pH range of 5.5 7.5 and offer a more difficult challenge to formulators who seek to prevent oxidation. Several patented antioxidant systems have been developed specifically for this compound. These consist of ascorbic acid and acetylcysteine, and sodium bisulfite and 8-hydroxyquinoline. Isoascorbic acid is also an effective antioxidant for this drug. Sodium thiosulfate is used with sodium sulfacetamide solutions. [Pg.458]

The number of moles of I3"(aq) produced is determined by titrating the iodide-treated sample with sodium thiosulfate. The balanced oxidation reaction that forms the basis for the titration is ... [Pg.562]

Epon 812 (Polybed) Formvar Glutaraldehyde Ilford L-4 emulsion with appropriate safelight Osmium tetroxide Phosphate Dibasic Monobasic Propylene oxide Sodium thiosulfate fixing solution... [Pg.255]

Principle. When serum is mixed with an Hb solution, the Hp is bound. The rate at which the mixture oxidizes I- to I2 in the presence of C2H5OOH is, under the conditions used, proportional to the HbBC (Hp content) of the serum. Hb added in excess is partially inactivated by addition of I2. The amount of I2 formed during the reaction is estimated by titration with sodium thiosulfate. [Pg.164]

Perhaps this may be considered in relation to the suggestion of Kellermeyer et al. (K5) that the drugs involved are transformed in vivo to redox intermediates. Furthermore, the reducing capacity of RBC was shown to be a function of GSH content. Reduction of this capacity by intravenous infusion of sodium thiosulfate solution reflects changes in the intracellular oxidation-reduction system of glutathione, the oxidized form being favored (Cl, S9). [Pg.279]

The amount of hypochlorite ion present in bleach can be determined by an oxidation-reduction titration. In this experiment, an iodine-thiosulfate titration will be utilized. The iodide ion is oxidized to form iodine, I2. This iodine is then titrated with a solution of sodium thiosulfate of known concentration. Three steps are involved ... [Pg.271]


See other pages where Sodium thiosulfate, oxidation is mentioned: [Pg.457]    [Pg.457]    [Pg.268]    [Pg.232]    [Pg.169]    [Pg.484]    [Pg.207]    [Pg.65]    [Pg.854]    [Pg.282]    [Pg.121]    [Pg.125]    [Pg.854]    [Pg.708]    [Pg.701]    [Pg.129]    [Pg.107]    [Pg.261]    [Pg.365]    [Pg.246]    [Pg.133]    [Pg.133]   


SEARCH



Sodium oxidation

Sodium oxide

Thiosulfate

Thiosulfate oxidation

Thiosulfates

Thiosulfates oxidation

© 2024 chempedia.info