Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium plant

Salt injury is common in areas of the country with saline soils, because beans are er sensitive to sodium. Planting in raised reds (with lots of compost worked in) and watering thoroughly may help. [Pg.35]

Vt the present time, there are two plants in the United States producing sodium peroxide. Both units are operated by sodium producers adjacent to their metallic sodium plants. USI s continuous process is located at Ashtabula, Ohio Du Font s unit at Niagara Falls, N.Y. is a batch process. [Pg.118]

Lake Sources. To get water for its Whiting plant, Carbide Carbon ran an intake pipe 700 ft out into Lake Michigan and put in an automatic pumping station. At Painesville, Ohio, Diamond Alkali takes 100 mgd and Industrial Rayon 30 mgd from Lake Erie. At Ashtabula, Ohio, Union Carbide s Electromet Division gets 7 mgd from Lake Erie, and National Distillers is pumping 5 mgd for various uses in its sodium plant. [Pg.278]

Trichloroethanoic acid, CCI3COOH. A crystalline solid which rapidly absorbs water vapour m.p. 58°C, b.p. 196-5" C. Manufactured by the action of chlorine on ethanoic acid at 160°C in the presence of red phosphorus, sulphur or iodine. It is decomposed into chloroform and carbon dioxide by boiling water. It is a much stronger acid than either the mono- or the dichloro-acids and has been used to extract alkaloids and ascorbic acid from plant and animal tissues. It is a precipitant for proteins and may be used to test for the presence of albumin in urine. The sodium salt is used as a selective weedkiller. [Pg.94]

The first commercial production of fatty alcohol ia the 1930s employed the sodium reduction process usiug a methyl ester feedstock. The process was used ia plants constmcted up to about 1950, but it was expensive, hazardous, and complex. By about 1960 most of the sodium reduction plants had been replaced by those employing the catalytic hydrogenolysis process. Catalytic hydrogenation processes were investigated as early as the 1930s by a number of workers one of these is described ia reference 26. [Pg.446]

Electrolytic plant producing metallic sodium and chlorine from molten sodium chlorine. [Pg.480]

The plant incorporating the air cathode electrolyzer must include a high performance air scmbbing system to eliminate carbon dioxide from the air. Failure to remove CO2 adequately results in the precipitation of sodium carbonate in the pores of the cathode this, in turn, affects the transport of oxygen and hydroxide within the electrode. Left unchecked, the accumulation of sodium carbonate will cause premature failure of the cathodes. [Pg.500]

Removal of brine contaminants accounts for a significant portion of overall chlor—alkali production cost, especially for the membrane process. Moreover, part or all of the depleted brine from mercury and membrane cells must first be dechlorinated to recover the dissolved chlorine and to prevent corrosion during further processing. In a typical membrane plant, HCl is added to Hberate chlorine, then a vacuum is appHed to recover it. A reducing agent such as sodium sulfite is added to remove the final traces because chlorine would adversely react with the ion-exchange resins used later in the process. Dechlorinated brine is then resaturated with soHd salt for further use. [Pg.502]

Historically, soda ash was produced by extracting the ashes of certain plants, such as Spanish barilla, and evaporating the resultant Hquor. The first large scale, commercial synthetic plant employed the LeBlanc (Nicolas LeBlanc (1742—1806)) process (5). In this process, salt (NaCl) reacts with sulfuric acid to produce sodium sulfate and hydrochloric acid. The sodium sulfate is then roasted with limestone and coal and the resulting sodium carbonate—calcium sulfide mixture (black ash) is leached with water to extract the sodium carbonate. The LeBlanc process was last used in 1916—1917 it was expensive and caused significant pollution. [Pg.522]

This carbon dioxide-free solution is usually treated in an external, weU-agitated liming tank called a "prelimer." Then the ammonium chloride reacts with milk of lime and the resultant ammonia gas is vented back to the distiller. Hot calcium chloride solution, containing residual ammonia in the form of ammonium hydroxide, flows back to a lower section of the distiller. Low pressure steam sweeps practically all of the ammonia out of the limed solution. The final solution, known as "distiller waste," contains calcium chloride, unreacted sodium chloride, and excess lime. It is diluted by the condensed steam and the water in which the lime was conveyed to the reaction. Distiller waste also contains inert soHds brought in with the lime. In some plants, calcium chloride [10045-52-4], CaCl, is recovered from part of this solution. Close control of the distillation process is requited in order to thoroughly strip carbon dioxide, avoid waste of lime, and achieve nearly complete ammonia recovery. The hot (56°C) mixture of wet ammonia and carbon dioxide leaving the top of the distiller is cooled to remove water vapor before being sent back to the ammonia absorber. [Pg.523]

The ammonium chloride process, developed by Asahi Glass, is a variation of the basic Solvay process (9—11). It requires the use of soHd sodium chloride but obtains higher sodium conversions (+90%) than does the Solvay process. This is especially important ia Japan, where salt is imported as a soHd. The major difference from the Solvay process is that here the ammonium chloride produced is crystallized by cooling and through the addition of soHd sodium chloride. The resulting mother Hquor is then recycled to dissolve additional sodium chloride. The ammonium chloride is removed for use as rice paddy fertilizer. Ammonia makeup is generally suppHed by an associated synthesis plant. [Pg.524]

Calcium Chloride. Distiller waste Hquor from synthetic plants can be evaporated in multiple effect evaporators, precipitating residual sodium chloride. The resulting mother Hquor is then further evaporated to a molar ratio of lCaCl2 2H20 and cooled to produce flakes that are dried in rotary or... [Pg.527]

Sodium Bicarbonate. Many soda ash plants convert a portion of their production to sodium bicarbonate [144-55-8], NaHCO. Soda ash is typically dissolved, carbonated, and cooled to crystallize sodium bicarbonate. The mother Hquor is heated and recycled. The soHd bicarbonate is dried in flash or tray driers, screened, and separated into various particle size ranges. Bicarbonate markets include food, pharmaceuticals, catde feed, and fire extinguishers. U.S. demand was approximately 320,000 t in 1989 world demand was estimated at one million metric tons. [Pg.527]

FMC makes sodium bicarbonate at the Green River complex by reaction of sesquicarbonate (Na2 CO3 -NaHC03 -2H2 O) with carbon dioxide recovered from a sodium phosphate plant. This fairly recently patented process avoids the energy intensive heating step (33). [Pg.527]

Sodium Hydroxide. Before World War 1, nearly all sodium hydroxide [1310-93-2], NaOH, was produced by the reaction of soda ash and lime. The subsequent rapid development of electrolytic production processes, resulting from growing demand for chlorine, effectively shut down the old lime—soda plants except in Eastern Europe, the USSR, India, and China. Recent changes in chlorine consumption have reduced demand, putting pressure on the price and availabiHty of caustic soda (NaOH). Because this trend is expected to continue, there is renewed interest in the lime—soda production process. EMC operates a 50,000 t/yr caustic soda plant that uses this technology at Green River it came onstream in mid-1990. Other U.S. soda ash producers have aimounced plans to constmct similar plants (1,5). [Pg.527]

Neste patented an industrial route to a cellulose carbamate pulp (90) which was stable enough to be shipped into rayon plants for dissolution as if it were xanthate. The carbamate solution could be spun into sulfuric acid or sodium carbonate solutions, to give fibers which when completely regenerated had similar properties to viscose rayon. When incompletely regenerated they were sufficientiy self-bonding for use in papermaking. The process was said to be cheaper than the viscose route and to have a lower environmental impact (91). It has not been commercialized, so no confirmation of its potential is yet available. [Pg.352]

Chemical retting iuvolves immersion of the dried plants iu a tank with a solutiou of chemicals, such as sodium hydroxide, sodium carbouate, soaps, or mineral acids. The fibers are looseued iu a few hours, but close coutrol is required to preveut deterioratiou. Chemical retting is more expeusive and does not produce a superior fiber to that obtained from biological retting. [Pg.360]

Starch is a polysaccharide found in many plant species. Com and potatoes are two common sources of industrial starch. The composition of starch varies somewhat in terms of the amount of branching of the polymer chains (11). Its principal use as a flocculant is in the Bayer process for extracting aluminum from bauxite ore. The digestion of bauxite in sodium hydroxide solution produces a suspension of finely divided iron minerals and siUcates, called red mud, in a highly alkaline Hquor. Starch is used to settle the red mud so that relatively pure alumina can be produced from the clarified Hquor. It has been largely replaced by acryHc acid and acrylamide-based (11,12) polymers, although a number of plants stiH add some starch in addition to synthetic polymers to reduce the level of residual suspended soHds in the Hquor. Starch [9005-25-8] can be modified with various reagents to produce semisynthetic polymers. The principal one of these is cationic starch, which is used as a retention aid in paper production as a component of a dual system (13,14) or a microparticle system (15). [Pg.32]

In addition, there are other methods of manufacture of cryoHte from low fluorine value sources, eg, the effluent gases from phosphate plants or from low grade fluorspar. In the former case, making use of the fluorosiHcic acid, the siHca is separated by precipitation with ammonia, and the ammonium fluoride solution is added to a solution of sodium sulfate and aluminum sulfate at 60—90°C to precipitate cryoHte (26,27) ... [Pg.144]

Fluoroacetic acid [144-49-OJ, FCH2COOH, is noted for its high, toxicity to animals, including humans. It is sold in the form of its sodium salt as a rodenticide and general mammalian pest control agent. The acid has mp, 33°C bp, 165°C heat of combustion, —715.8 kJ/mol( —171.08 kcal/mol) (1) enthalpy of vaporization, 83.89 kJ /mol (20.05 kcal/mol) (2). Some thermodynamic and transport properties of its aqueous solutions have been pubHshed (3), as has the molecular stmcture of the acid as deterrnined by microwave spectroscopy (4). Although first prepared in 1896 (5), its unusual toxicity was not pubhshed until 50 years later (6). The acid is the toxic constituent of a South African plant Dichapetalum i mosum better known as gifirlaar (7). At least 24 other poisonous plant species are known to contain it (8). [Pg.307]

Cellulose. The principal stmctural component of plant ceU waUs is ceUulose (qv). The most widely used ceUulose derivative is the sodium salt of carboxymethylceUulose (CMC). It is made by treating ceUulose with sodium hydroxide—chloroacetic acid. CMC is widely used in the food industry in products such as baked goods, icings, symps, gla2es, fro2en dairy products, and dry drink mixes (89). [Pg.444]


See other pages where Sodium plant is mentioned: [Pg.122]    [Pg.113]    [Pg.389]    [Pg.20]    [Pg.122]    [Pg.113]    [Pg.389]    [Pg.20]    [Pg.164]    [Pg.259]    [Pg.208]    [Pg.142]    [Pg.129]    [Pg.234]    [Pg.241]    [Pg.479]    [Pg.494]    [Pg.495]    [Pg.496]    [Pg.502]    [Pg.502]    [Pg.503]    [Pg.524]    [Pg.524]    [Pg.524]    [Pg.525]    [Pg.47]    [Pg.119]    [Pg.150]    [Pg.221]    [Pg.223]    [Pg.351]    [Pg.128]    [Pg.441]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Sodium Azide, Plant Analytical Procedures

Sodium Azide, Plant Analytical Procedures Analysis of Ammonia

Sodium Azide, Plant Analytical Procedures Analysis of First Clear Liquor

Sodium Azide, Plant Analytical Procedures Analysis of First Mother Liquor

Sodium Azide, Plant Analytical Procedures Analysis of Lime Treatment Tank

Sodium Azide, Plant Analytical Procedures Analysis of SA, Crystalline

Sodium Azide, Plant Analytical Procedures Analysis of Second Clear Liquor

Sodium Azide, Plant Analytical Procedures Analysis of Second Mother Liquor

Sodium Azide, Plant Analytical Procedures Analysis of Technical SA Prepared from

Sodium Azide, Plant Analytical Procedures Analysis of Wringer-Cake

Sodium Azide, Plant Analytical Procedures Aqueous Ammonia

Sodium Azide, Plant Analytical Procedures Colorimetric Determination

Sodium Azide, Plant Analytical Procedures Hydrazine and Ethyl Nitrate

Sodium plant tolerance

Sodium-cooled fast reactor plant system

© 2024 chempedia.info