Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tissue animal

Trichloroethanoic acid, CCI3COOH. A crystalline solid which rapidly absorbs water vapour m.p. 58°C, b.p. 196-5" C. Manufactured by the action of chlorine on ethanoic acid at 160°C in the presence of red phosphorus, sulphur or iodine. It is decomposed into chloroform and carbon dioxide by boiling water. It is a much stronger acid than either the mono- or the dichloro-acids and has been used to extract alkaloids and ascorbic acid from plant and animal tissues. It is a precipitant for proteins and may be used to test for the presence of albumin in urine. The sodium salt is used as a selective weedkiller. [Pg.94]

A base, formed by the bacterial degradation of histidine, and present in ergot and in many animal tissues, where it is liberated in response to injury and to antigen-antibody reactions. If injected it causes a condition of shock with dilatation of many blood vessels, loss of plasma from the capillaries to the tissues and a rapid fall in blood pressure. It is normally prepared from protein degradation products. [Pg.204]

The isolation of enzymes in a pure state is frequently a matter of great difficulty owing to their instability, their low concentrations in plant and animal tissues, and also to their colloidal nature. The methods employed depend upon the physical and chemical nature of the enzyme in question. In the following experiments, no attempt has been made to isolate enzymes in a high slate of purity. [Pg.510]

Research in physiology carried out in the 1930s established that the lipid fraction of semen contains small amounts of substances that exert powerful effects on smooth mus cle Sheep prostate glands proved to be a convenient source of this material and yielded a mixture of structurally related substances referred to collectively as prostaglandins We now know that prostaglandins are present m almost all animal tissues where they carry out a variety of regulatory functions... [Pg.1080]

Fats in animal tissue Fat substitutes Fatty acid... [Pg.391]

Proteins. Proteins (qv) supply amino acids (qv), palatabiHty enhancement, and, when present in more than requited amounts, energy as the proteins are degraded and nitrogen compounds excreted. Dogs and cats can consume and meet amino acid requirements in the form of pure amino acids with complete success. However, animal tissue cannot differentiate between pure, plant, or animal sources of those amino acids, and those amino acids can be obtained much more economically from either plant or animal proteins. [Pg.150]

The extension of the useful storage life of plant and animal products beyond a few days at room temperature presents a series of complex biochemical, physical, microbial, and economic challenges. Respiratory enzyme systems and other enzymes ia these foods continue to function. Their reaction products can cause off-davors, darkening, and softening. Microbes contaminating the surface of plants or animals can grow ia cell exudates produced by bmises, peeling, or size reduction. Fresh plant and animal tissue can be contaminated by odors, dust, iasects, rodents, and microbes. [Pg.458]

Synthesis. In contrast to pituitary hormones, which usually can be obtained in pure form only after extraction from animal tissues, brain oligopeptides are readily available because of their small size. The synthetic repHca represents the most economical and readily accessible source for the oligopeptides. Two techniques are available for laboratory synthesis of oligopeptides, ie, solution chemistry and soHd-phase peptide synthesis (SPPS). [Pg.200]

EIA was originally developed as a histological technique to localize specific ceUular sites using the specificity of an immunological reaction (23). The resulting fluorescent antibodies can be detected in animal tissues at levels as low as 1 /tg/mL of body fluid. Eluorophore-labeled antibodies have also been used widely for flow cytometry appHcations using fluorescein antibodies to cell surface markers to detect and quantify specific cells (24). [Pg.26]

Although not abundant in quantity, iodine is distributed in rocks, soils, waters, plants, animal tissues, and foodstuffs (3,4). Excepting the possible occurrence of elemental iodine vapor in the air near certain iodine-rich springs, iodine never occurs free in nature. It is always found combined with other elements. [Pg.358]

Industrial lecithins from a variety of sources ate utilized (Tables 2 and 3). The main sources include vegetable oils (eg, soy bean, cottonseed, corn, sunflower, tapeseed) and animal tissues (egg and bovine brain). However, egg lecithin and in particular soy lecithin (Table 4) ate by fat the most important in terms of quantities produced. So much so that the term soy lecithin and commercial lecithin ate often used synonymously. [Pg.97]

Microscopists in every technical field use the microscope to characterize, compare, and identify a wide variety of substances, eg, protozoa, bacteria, vimses, and plant and animal tissue, as well as minerals, building materials, ceramics, metals, abrasives, pigments, foods, dmgs, explosives, fibers, hairs, and even single atoms. In addition, microscopists help to solve production and process problems, control quaUty, and handle trouble-shooting problems and customer complaints. Microscopists also do basic research in instmmentation, new techniques, specimen preparation, and appHcations of microscopy. The areas of appHcation include forensic trace evidence, contamination analysis, art conservation and authentication, and asbestos control, among others. [Pg.328]

The TEM is one of the most generally useful microscopes many thousands of them ate in daily use throughout the world. They ate appHcable to the study of ultrafine particles (eg, pigments abrasives and carbon blacks) as well as microtomed thin sections of plant and animal tissue, paper, polymers, composites of all kinds, foods, industrial materials, etc. Even metals can be thinned to sections thin enough for detailed examination. [Pg.332]

The therapeutically active dmg can be extracted from plant or animal tissue, or be a product of fermentation (qv), as in the case of antibiotics. Frequentiy, it is synthesized and designed to correlate stmcture with therapeutic activity. Pharmacologic activity is first tested on laboratory animals. When the results ate encouraging, physical and chemical properties are determined in the so-called preformulation stage, and analytical procedures are developed for quahty control (see Qualityassurance/qualitycontrol). [Pg.225]

The age pigments (lipofuscin), which accumulate with age, aie largely made up of these precipitated Hpid-proteia complexes resultiag from such cross-linking. Vitamin E may function to help prevent formation of these complexes. The metaboHc role of antioxidants (qv) such as vitamin E in animal tissues, however, remains quite controversial. [Pg.428]

It can be found in animal tissues (1), in vegetables and fmit (2,3), or in spring water (4), and has also been identified in meteorites (5). It is formed in alcohohc fermentation (6) and in the chemical and biochemical oxidation of fats. Succinic acid is present in amber (7) Succinuni) and can be obtained by distillation, by which method it was first isolated by Georgius Agricola in 1550. [Pg.534]

Sulfoxides occur widely in small concentrations in plant and animal tissues, eg, aHyl vinyl sulfoxide [81898-53-5] in garlic oil and 2,2 -sulfinylbisethanol [3085-45-8] as fatty esters in the adrenal cortex (1,2). Homologous methyl sulfinyl alkyl isothiocyanates, which are represented by the formula CH3SO(CH2) NCS, where n = 3 [37791-20-1], 4 [4478-93-7], 5 [646-23-1], 8 [75272-81-0], 9 [39036-83-4], or 10 [39036-84-5], have been isolated from a number of mustard oils in which they occur as glucosides (3). Two methylsulfinyl amino acids have also been reported methionine sulfoxide [454-41-1] from cockroaches and the sulfoxide of i -methylcysteine, 3-(methylsulfinyl)alaiiine [4740-94-7]. The latter is the dominant sulfur-containing amino acid in turnips and may account in part for their characteristic odor (4). [Pg.107]

An on-line concentration, isolation, and Hquid chromatographic separation method for the analysis of trace organics in natural waters has been described (63). Concentration and isolation are accompHshed with two precolumns connected in series the first acts as a filter for removal of interferences the second actually concentrates target solutes. The technique is appHcable even if no selective sorbent is available for the specific analyte of interest. Detection limits of less than 0.1 ppb were achieved for polar herbicides (qv) in the chlorotriazine and phenylurea classes. A novel method for deterrnination of tetracyclines in animal tissues and fluids was developed with sample extraction and cleanup based on tendency of tetracyclines to chelate with divalent metal ions (64). The metal chelate affinity precolumn was connected on-line to reversed-phase hplc column, and detection limits for several different tetracyclines in a variety of matrices were in the 10—50 ppb range. [Pg.245]

Since the avermectins exhibit unprecedented potency, they are used at unusually low doses of 6 —300 )-lg/kg, which makes the detection and isolation of residues and metaboUtes from animal tissue a new challenge. For this reason a sensitive analytical assay requires a derivative suitable for detection at concentrations down to 1/10 or 1/100 of one ppm. Ivermectin and avermectin B are therefore converted into an aromatic derivative which allows detection by fluorescence absorbance. To achieve this derivatization, avermectin B, ivermectin, or their derivatives are heated with acetic anhydride in pyridine at 100°C for 24 h (30). The reaction time can be reduced to 1 h by using /V-methylimidazole as a catalyst (31). The resultant... [Pg.282]


See other pages where Tissue animal is mentioned: [Pg.84]    [Pg.84]    [Pg.129]    [Pg.193]    [Pg.194]    [Pg.244]    [Pg.272]    [Pg.369]    [Pg.377]    [Pg.405]    [Pg.411]    [Pg.1634]    [Pg.124]    [Pg.307]    [Pg.457]    [Pg.458]    [Pg.460]    [Pg.240]    [Pg.278]    [Pg.329]    [Pg.330]    [Pg.179]    [Pg.283]    [Pg.440]    [Pg.211]    [Pg.478]    [Pg.251]    [Pg.393]    [Pg.79]    [Pg.87]    [Pg.111]    [Pg.282]   
See also in sourсe #XX -- [ Pg.387 , Pg.409 , Pg.410 , Pg.411 , Pg.412 ]

See also in sourсe #XX -- [ Pg.119 , Pg.195 , Pg.196 ]

See also in sourсe #XX -- [ Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.153 ]

See also in sourсe #XX -- [ Pg.256 ]




SEARCH



© 2024 chempedia.info