Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivity monoxide

Another concern in an atom-economic design of oxidations involves the use of dioxygen for the selective monoxidation of a substrate S according to... [Pg.132]

Soderquist and Najafi [22] have reported the selective monoxidation of B-substituted derivatives of 9-BBN to afford in good yield the exclusive formation of 9-oxa-10-borabicyclo[3.3.2]decane products (Eq. 3.8 Table 3.6). The reaction proceeds smoothly using 1 equiv of anhydrous trimethylamine N-oxide (TMANO) in CHCl, at 0 °C. [Pg.14]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

The preheated gases react exothermically over the first-stage catalyst with the peak temperature ia the range of 330—430°C, depending on conditions and catalyst selectivity. The conversion of propylene to waste gas (carbon dioxide and carbon monoxide) is more exothermic than its conversion to acroleia. At the end of the catalyst bed the temperature of the mixture drops toward that of the molten salt coolant. [Pg.153]

Often the aldehyde is hydrogenated to the corresponding alcohol. In general, addition of carbon monoxide to a substrate is referred to as carbonylation, but when the substrate is an olefin it is also known as hydroformylation. The eady work on the 0x0 synthesis was done with cobalt hydrocarbonyl complexes, but in 1976 a low pressure rhodium-cataly2ed process was commerciali2ed that gave greater selectivity to linear aldehydes and fewer coproducts. [Pg.166]

Carbocations generated from alkanes using superacids react with carbon monoxide under mild conditions to form carboxyUc acid (188). In this process isomeric carboxyUc acids are produced as a mixture. However, when the reaction is mn with catalytic amounts of bromine (0.3 mmol eq) in HF-SbF solution, regio-selective carboxylation is obtained. / -Propane was converted almost exclusively to isobutyric acid under these conditions. [Pg.563]

Other Methods. A variety of other methods have been studied, including phenol hydroxylation by N2O with HZSM-5 as catalyst (69), selective access to resorcinol from 5-methyloxohexanoate in the presence of Pd/C (70), cyclotrimerization of carbon monoxide and ethylene to form hydroquinone in the presence of rhodium catalysts (71), the electrochemical oxidation of benzene to hydroquinone and -benzoquinone (72), the air oxidation of phenol to catechol in the presence of a stoichiometric CuCl and Cu(0) catalyst (73), and the isomerization of dihydroxybenzenes on HZSM-5 catalysts (74). [Pg.489]

The reaction is mn for several hours at temperatures typically below 100°C under a pressure of carbon monoxide to minimise formamide decomposition (73). Conversions of a-hydroxyisobutyramide are near 65% with selectivities to methyl a-hydroxyisobutyrate and formamide in excess of 99%. It is this step that is responsible for the elimination of the acid sludge stream characteristic of the conventional H2SO4—ACH processes. Because methyl formate, and not methanol, is used as the methylating agent, formamide is the co-product instead of ammonium sulfate. Formamide can be dehydrated to recover HCN for recycle to ACH generation. [Pg.252]

The reaction of methyl propionate and formaldehyde in the gas phase proceeds with reasonable selectivity to MMA and MAA (ca 90%), but with conversions of only 30%. A variety of catalysts such as V—Sb on siUca-alumina (109), P—Zr, Al, boron oxide (110), and supported Fe—P (111) have been used. Methjial (dimethoxymethane) or methanol itself may be used in place of formaldehyde and often result in improved yields. Methyl propionate may be prepared in excellent yield by the reaction of ethylene and carbon monoxide in methanol over a mthenium acetylacetonate catalyst or by utilizing a palladium—phosphine ligand catalyst (112,113). [Pg.253]

Ca.rbonylProcess. Cmde nickel also can be refined to very pure nickel by the carbonyl process. The cmde nickel and carbon monoxide (qv) react at ca 100°C to form nickel carbonyl [13463-39-3] Ni(CO)4, which upon further heating to ca 200—300°C, decomposes to nickel metal and carbon monoxide. The process is highly selective because, under the operating conditions of temperature and atmospheric pressure, carbonyls of other elements that are present, eg, iron and cobalt, are not readily formed. [Pg.3]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

Gas-phase oxidation of propylene using oxygen in the presence of a molten nitrate salt such as sodium nitrate, potassium nitrate, or lithium nitrate and a co-catalyst such as sodium hydroxide results in propylene oxide selectivities greater than 50%. The principal by-products are acetaldehyde, carbon monoxide, carbon dioxide, and acrolein (206—207). This same catalyst system oxidizes propane to propylene oxide and a host of other by-products (208). [Pg.141]

Other important uses of stannic oxide are as a putty powder for polishing marble, granite, glass, and plastic lenses and as a catalyst. The most widely used heterogeneous tin catalysts are those based on binary oxide systems with stannic oxide for use in organic oxidation reactions. The tin—antimony oxide system is particularly selective in the oxidation and ammoxidation of propylene to acrolein, acryHc acid, and acrylonitrile. Research has been conducted for many years on the catalytic properties of stannic oxide and its effectiveness in catalyzing the oxidation of carbon monoxide at below 150°C has been described (25). [Pg.65]

A flow diagram for the system is shown in Figure 5. Feed gas is dried, and ammonia and sulfur compounds are removed to prevent the irreversible buildup of insoluble salts in the system. Water and soHds formed by trace ammonia and sulfur compounds are removed in the solvent maintenance section (96). The pretreated carbon monoxide feed gas enters the absorber where it is selectively absorbed by a countercurrent flow of solvent to form a carbon monoxide complex with the active copper salt. The carbon monoxide-rich solution flows from the bottom of the absorber to a flash vessel where physically absorbed gas species such as hydrogen, nitrogen, and methane are removed. The solution is then sent to the stripper where the carbon monoxide is released from the complex by heating and pressure reduction to about 0.15 MPa (1.5 atm). The solvent is stripped of residual carbon monoxide, heat-exchanged with the stripper feed, and pumped to the top of the absorber to complete the cycle. [Pg.57]

Adsorption Processes. More recendy, pressure swing adsorption (PSA) processes utilizing a high selectivity copper adsorbent have been utilized to effectively separate carbon monoxide from blast furnace gas and coke oven gas (97—101). [Pg.58]

In these processes, a carbon monoxide containing gas is fed to an adsorber bed containing copper, typically dispersed on a high surface area support such as alumina or carbon. The copper is present predominately as Cu", which selectively adsorbs carbon monoxide. The remainder of the gas stream passes through the adsorbent bed. The carbon monoxide is then removed from the adsorbent by lowering the pressure. Figure 6 shows a typical process for a CO-PSA process. Process conditions are typically adsorption pressures of 0.68—204 MPa (6.8—20.4 atm) and temperatures of 313—373 K. Regeneration occurs at reduced pressure or by vacuum. [Pg.58]

Neo acids are prepared from selected olefins using carbon monoxide and acid catalyst (4) (see Carboxylic Acids, trialkylacetic acids). 2-EthyIhexanoic acid is manufactured by an aldol condensation of butyraldehyde followed by an oxidation of the resulting aldehyde (5). Isopalmitic acid [4669-02-7] is probably made by an aldol reaction of octanal. [Pg.100]

Only recently has a mechanism been proposed for the copper-cataly2ed reaction that is completely satisfactory (58). It had been known for many years that a small amount of carbon dioxide in the feed to the reactor is necessary for optimum yield, but most workers in the field beHeved that the main reaction in the formation of methanol was the hydrogenation of carbon monoxide. Now, convincing evidence has been assembled to indicate that methanol is actually formed with >99% selectivity by the reaction of dissociated, adsorbed hydrogen and carbon dioxide on the metallic copper surface in two steps ... [Pg.199]

A Belgian patent (178) claims improved ethanol selectivity of over 62%, starting with methanol and synthesis gas and using a cobalt catalyst with a hahde promoter and a tertiary phosphine. At 195°C, and initial carbon monoxide pressure of 7.1 MPa (70 atm) and hydrogen pressure of 7.1 MPa, methanol conversions of 30% were indicated, but the selectivity for acetic acid and methyl acetate, usehil by-products from this reaction, was only 7%. Ruthenium and osmium catalysts (179,180) have also been employed for this reaction. The addition of a bicycHc trialkyl phosphine is claimed to increase methanol conversion from 24% to 89% (181). [Pg.408]

The information obtained during the background search and from the source inspection will enable selection of the test procedure to be used. The choice will be based on the answers to several questions (1) What are the legal requirements For specific sources there may be only one acceptable method. (2) What range of accuracy is desirable Should the sample be collected by a procedure that is 5% accurate, or should a statistical technique be used on data from eight tests at 10% accuracy Costs of different test methods will certainly be a consideration here. (3) Which sampling and analytical methods are available that will give the required accuracy for the estimated concentration An Orsat gas analyzer with a sensitivity limit of 0.02% would not be chosen to sample carbon monoxide... [Pg.537]

Bhattachaijee et al. [98] reported that nitrile rubber can be selectively hydroformylated in the presence of RhH(CO)(PPh3)3 and RhCl(CO)(PPh3)2 under high pressure of carbon monoxide and hydrogen. They found that RhH(CO)(PPh3)3 was more efficient than RhCl(CO)(PPh3)2. However, both catalysts offered se-... [Pg.567]

The greater lability of 1-benzothiepin 1-oxides, compared to the parent compounds, may lead to differences in chemical behavior. Thus, treatment of the tricarbonyliron complex of 1-benzo-thiepin 1-oxide (8, X = SO) with ammonium cerium(IV) nitrate in acetone at — 30 °C leads, with the loss of sulfur monoxide, to naphthalene. In contrast, the iron ligand can be removed selectively from the corresponding 1-benzothiepin by ammonium cerium(IV) nitrate.23 92 For the synthesis of 1-benzothiepin 1-oxide, see Section 2.1.4.1,... [Pg.97]

In 1991, Ohfune and coworkers reported palladium(O)-catalyzed carbonylation of vinylaziridines 262 with carbon monoxide (1 atm.) in benzene (Scheme 2.65) [31]. Interestingly, 3,4-trans-azetidinone 264 was exclusively obtained from a dia-stereomeric mixture of trans- and cis-vinylaziridines 262 (3 1). Tanner and Somfai synthesized (+)-PS-5 (267) by use of palladium(O)-catalyzed trons-selective (3-lactam formation in the presence of Pd(dba)3 CHC13 (15mol%) and excess PPh3 in toluene. [Pg.67]

It is highly active but easily poisoned by sulfur and not particularly selective to methane. Oddly enough, carbon monoxide appears to inhibit the rate of methane formation. [Pg.25]


See other pages where Selectivity monoxide is mentioned: [Pg.19]    [Pg.76]    [Pg.81]    [Pg.292]    [Pg.76]    [Pg.77]    [Pg.15]    [Pg.547]    [Pg.455]    [Pg.186]    [Pg.504]    [Pg.43]    [Pg.179]    [Pg.392]    [Pg.327]    [Pg.54]    [Pg.55]    [Pg.465]    [Pg.466]    [Pg.441]    [Pg.2197]    [Pg.1296]    [Pg.112]    [Pg.149]    [Pg.148]    [Pg.445]    [Pg.748]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Carbon monoxide formation selectivity

Carbon monoxide hydrocarbon synthesis selectivity

Carbon monoxide selective methanation

Carbon monoxide selective oxidation

Carbon monoxide selectivity during

Selective Methanation of Carbon Monoxide

Selective oxidation of carbon monoxide

Selective oxidation of carbon monoxide in hydrogen

The Selective Oxidation of Carbon Monoxide in Hydrogen

© 2024 chempedia.info