Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide formation selectivity

The effect of the YSZ coating on the ceria-based solid electrolyte was shown in Table 1. When the YSZ I SDC membrane was used as the solid electrolyte, selectivities to acrylaldehyde (Scho) carbon monoxide (Sco) and carbon dioxide (Scoa) based on converted propene was 13.4%, 25.6% and 61%, respectively. Here, it should be emphasized that the selectivity to acrylaldehyde increased with YSZ coating compared with that (Scho =8.5 %) obtedned by using SDC alone as a solid electrolyte. In addition, it was found that carbon monoxide formation was observed in the present study, although its formation was not detected in the case of SDC alone. The same phenomena were observed, when the Gd doped... [Pg.1227]

Mass transport limitations also increase the selectivity of copper/zinc oxide/alumina catalysts towards carbon monoxide in larger particles [149]. Purnama et al. therefore proposed catalyst coatings as a means of reducing carbon monoxide formation. [Pg.72]

The reaction is mn for several hours at temperatures typically below 100°C under a pressure of carbon monoxide to minimise formamide decomposition (73). Conversions of a-hydroxyisobutyramide are near 65% with selectivities to methyl a-hydroxyisobutyrate and formamide in excess of 99%. It is this step that is responsible for the elimination of the acid sludge stream characteristic of the conventional H2SO4—ACH processes. Because methyl formate, and not methanol, is used as the methylating agent, formamide is the co-product instead of ammonium sulfate. Formamide can be dehydrated to recover HCN for recycle to ACH generation. [Pg.252]

Only recently has a mechanism been proposed for the copper-cataly2ed reaction that is completely satisfactory (58). It had been known for many years that a small amount of carbon dioxide in the feed to the reactor is necessary for optimum yield, but most workers in the field beHeved that the main reaction in the formation of methanol was the hydrogenation of carbon monoxide. Now, convincing evidence has been assembled to indicate that methanol is actually formed with >99% selectivity by the reaction of dissociated, adsorbed hydrogen and carbon dioxide on the metallic copper surface in two steps ... [Pg.199]

In 1991, Ohfune and coworkers reported palladium(O)-catalyzed carbonylation of vinylaziridines 262 with carbon monoxide (1 atm.) in benzene (Scheme 2.65) [31]. Interestingly, 3,4-trans-azetidinone 264 was exclusively obtained from a dia-stereomeric mixture of trans- and cis-vinylaziridines 262 (3 1). Tanner and Somfai synthesized (+)-PS-5 (267) by use of palladium(O)-catalyzed trons-selective (3-lactam formation in the presence of Pd(dba)3 CHC13 (15mol%) and excess PPh3 in toluene. [Pg.67]

It is highly active but easily poisoned by sulfur and not particularly selective to methane. Oddly enough, carbon monoxide appears to inhibit the rate of methane formation. [Pg.25]

The mode of chemisorption of CO is a key-factor concerning selectivity to various products. Hydrocarbons can only be produced if the carbon-oxygen bond is broken, whereas this bond must stay intact for the formation of oxygenates. It is obvious that catalysts favoring the production of hydrocarbons must chemisorb carbon monoxide dissociatively (e.g. Fe) while those favoring the formation of oxygenates must be able to chemisorb carbon monoxide molecularly (e.g. Rh). [Pg.78]

Next, we investigated the effect of input power on ps formation rates and on carbon-selectivity. As shown in Fig. 3, the amount of product inerrased as the input powear increased. The selectivity to carbon monoxide and C2 hydrocarbons was constant despite the change of the input power. These results showed m identical trend to that of the gas phase... [Pg.814]

Within this context carbon monoxide is not the inert molecule so frequently depicted on the basis of its formal triple bond and the remarkable similarity of its physical properties to those of the isoelectronic molecule dinitrogen. (Indeed, if it were, atmospheric carbon monoxide would present no hazard ) It is, in fact, a fairly readily activated molecule the industrial process for the production of methyl formate (1) is well known, but it is less widely appreciated that this process is an example of a homogeneous, selective, base-catalyzed, activation of carbon monoxide which has for its net chemistry... [Pg.26]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

In a noteworthy series of studies, Herndon has shown that cyclopropylcarbenes can be used as four-carbon components in molybdenum- and tungsten-mediated [4 + 2 + l]-reactions with alkynes and carbon monoxide (CO). These reactions give cycloheptadienones in moderate yields and with moderate selectivity (Equations (26)—(28)). The mechanism of this reaction is proposed to proceed through a series of steps involving metathesis, GO insertion, ketene formation, cyclopropane cleavage, and finally reductive elimination (Scheme 43).133... [Pg.626]

The reaction network for isobutane selective oxidation catalyzed by POMs consists of parallel reactions for the formation of methacrolein, methacrylic acid, carbon monoxide, and carbon dioxide. Consecutive reactions occur on methacrolein, which is transformed to acetic acid, methacrylic acid, and carbon oxides. ° Methacrylic acid undergoes consecutive reactions of combustion to carbon oxides and acetic acid, but only under conditions of high isobutane conversion. Isobutene is believed to be an intermediate of isobutane transformation to methacrylic acid, but it can be isolated as a reaction product only for very low alkane conversion. ... [Pg.274]

There are three major gas reformate requirements imposed by the various fuel cells that need addressing. These are sulfur tolerance, carbon monoxide tolerance, and carbon deposition. The activity of catalysts for steam reforming and autothermal reforming can also be affected by sulfur poisoning and coke formation. These requirements are applicable to most fuels used in fuel cell power units of present interest. There are other fuel constituents that can prove detrimental to various fuel cells. However, these appear in specific fuels and are considered beyond the scope of this general review. Examples of these are halides, hydrogen chloride, and ammonia. Finally, fuel cell power unit size is a characteristic that impacts fuel processor selection. [Pg.205]

In sharp contrast to the unique pattern for the incorporation of carbon monoxide into the 1,6-diyne 63, aldehyde 77 was obtained as the sole product in the rhodium-catalyzed reaction of 1,6-enyne 76 with a molar equivalent of Me2PhSiH under CO (Scheme 6.15, mode 1) [22]. This result can be explained by the stepwise insertion of the acetylenic and vinylic moieties into the Rh-Si bond, the formyl group being generated by the reductive elimination to afford 77. The fact that a formyl group can be introduced to the ole-finic moiety of 76 under mild conditions should be stressed, since enoxysilanes are isolated in the rhodium-catalyzed silylformylation of simple alkenes under forcing conditions. The 1,6-enyne 76 is used as a typical model for Pauson-Khand reactions (Scheme 6.15, mode 2) [23], whereas formation of the corresponding product was completely suppressed in the presence of a hydrosilane. The selective formation of 79 in the absence of CO (Scheme 6.15, mode 3) supports the stepwise insertion of the acetylenic and olefmic moieties in the same molecules into the Rh-Si bond. [Pg.126]

One of the simplest examples for such effects is the oxidation of ammonia with iron oxide-bismuth oxide as a catalyst. Here, the addition of bismuth oxide results in the formation of nitrous oxides as the main product whereas an iron oxide catalyst without bismuth oxide yields nitrogen almost exlcusively. Selectively guiding catalysts become increasingly important in the synthesis of organic compounds, e.g., in the hydrogenation of carbon monoxide where the type of obtainable product can be varied, within wide limits, by the kinds of catalysts and promoters which are employed. [Pg.102]

The direct conversion deals with the straight hydrogenation of carbon monoxide to paraffins, olefins and heteroatom (oxygen, nitrogen) containing products. The indirect conversion invokes intermediates such as methanol, methyl formate and formaldehyde. The latter ones in a consecutive reaction can yield a variety of desired chemicals. For instance, acetic acid can be synthesized directly from CO/H2, but for reasons of selectivity the carbonylation of methanol is by far the best commercial process. [Pg.3]

Figure 5. Formation of carbon monoxide and carbon dioxide and selectivity of carbon monoxide... Figure 5. Formation of carbon monoxide and carbon dioxide and selectivity of carbon monoxide...

See other pages where Carbon monoxide formation selectivity is mentioned: [Pg.257]    [Pg.198]    [Pg.337]    [Pg.190]    [Pg.230]    [Pg.76]    [Pg.504]    [Pg.63]    [Pg.1037]    [Pg.33]    [Pg.115]    [Pg.337]    [Pg.13]    [Pg.160]    [Pg.76]    [Pg.70]    [Pg.179]    [Pg.357]    [Pg.75]    [Pg.213]    [Pg.182]    [Pg.311]    [Pg.418]    [Pg.221]    [Pg.385]    [Pg.356]    [Pg.25]    [Pg.112]    [Pg.231]    [Pg.200]    [Pg.97]    [Pg.98]    [Pg.7]   
See also in sourсe #XX -- [ Pg.103 ]




SEARCH



Format selection

Selectivity monoxide

© 2024 chempedia.info