Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur monoxide

Diphenylthiirene 1-oxide and several thiirene 1,1-dioxides show very weak molecular ions by electron impact mass spectrometry, but the molecular ions are much more abundant in chemical ionization mass spectrometry (75JHC21). The major fragmentation pathway is loss of sulfur monoxide or sulfur dioxide to give the alkynic ion. High resolution mass measurements identified minor fragment ions from 2,3-diphenylthiirene 1-oxide at mje 105 and 121 as PhCO" and PhCS, which are probably derived via rearrangement of the thiirene sulfoxide to monothiobenzil (Scheme 2). [Pg.135]

S.06.3.2.1 Extrusion of sulfur, sulfur monoxide or sulfur dioxide... [Pg.140]

Diphenylthiirene 1-oxide reacts with hydroxylamine to give the oxime of benzyl phenyl ketone (79JA390). The reaction probably occurs by addition to the carbon-carbon double bond followed by loss of sulfur monoxide (Scheme 80). Dimethylamine adds to the double bond of 2,3-diphenylthiirene 1,1-dioxide with loss of sulfur dioxide (Scheme 81) (75JOC3189). Azide ion gives seven products, one of which involves cleavage of the carbon-carbon bond of an intermediate cycloadduct (Scheme 81) (80JOC2604). [Pg.159]

K. K. Pandey, Coordination Chemistry of Thionitr osyl, Thiazate, Disulfidothionitrute, Sulfur Monoxide and Disulfur Monoxide, Prog. Inorg. Chem., 40, 445 (1992). [Pg.14]

Besides a parent ion, the mass spectra of benzo- and dibenzothiepins show the corresponding naphthalene or phenanthrene radical cations as the base peak.2-16 The mass spectra of 1-benzo-thiepin 1-oxides and 1,1-dioxides show the same naphthalene radical cation, formed by loss of sulfur monoxide or sulfur dioxide, respectively.14 In contrast, in the mass spectrum of 2,7-di-terf-butylthiepin peaks resulting from the loss of sulfur are not found.17... [Pg.67]

Treatment of ethyl 2,7-di-/ert-butylthiepin-4-carboxylate (24) with 3-chloroperoxybenzoic acid at — 78 °C results in the benzene derivative 25 only, and no sulfur-oxidized products 80 however, the stable 2,7-di-ter/-butylthiepin (26) can be oxidized with 0-benzyl 00-hydrogen monoper-oxycarbonate at — 78 °C to give the corresponding S-oxide 27, which was monitored by HNMR spectroscopy at — 40°C. At —15 C, sulfoxide 27 was converted, via extrusion of sulfur monoxide, with a half-life of 5.5 hours to the benzene derivative 28.87 The oxidation reaction of 26 with excess of the monoperoxycarbonate did not proceed to the S,S-dioxide, even though the parent thiepin 1,1-dioxide is known to be stable at room temperature.15... [Pg.91]

The loss of sulfur from substituted 4-phenyl-1-benzothiepins 7 can be achieved by heating in cyclohexane or carbon tetrachloride.90 In a similar way, but under mild conditions,14 the elimination of sulfur monoxide occurs from the corresponding 1-benzothiepin 1-oxides, reflecting the lower thermal stability of the sulfoxides in apolar solvents.85... [Pg.97]

The greater lability of 1-benzothiepin 1-oxides, compared to the parent compounds, may lead to differences in chemical behavior. Thus, treatment of the tricarbonyliron complex of 1-benzo-thiepin 1-oxide (8, X = SO) with ammonium cerium(IV) nitrate in acetone at — 30 °C leads, with the loss of sulfur monoxide, to naphthalene. In contrast, the iron ligand can be removed selectively from the corresponding 1-benzothiepin by ammonium cerium(IV) nitrate.23 92 For the synthesis of 1-benzothiepin 1-oxide, see Section 2.1.4.1,... [Pg.97]

Similarly, a common feature in the mass spectrum of thiirene oxides is the high abundance of the substituted acetylene ion (e.g. [PhC CPh]7) formed by elimination of sulfur monoxide. In fact, this ion constitutes the base peak in the spectrum of 18a whereas the molecular ion has a rather insignificant intensity (0.25% I of M+)91. [Pg.397]

Hence, one would expect the thermal elimination of sulfur dioxide or of sulfur monoxide... [Pg.398]

It has been generally assumed that thermal decomposition of thiirane oxides proceeds stereospecifically to the corresponding olefins by elimination of sulfur monoxide, possibly through a concerted nonlinear chelatropic reaction96 with retention of configuration of the liberated olefin. [Pg.400]

It is highly probable that the lesser stability of thiirene dioxides compared with that of the thiirene oxides simply reflects the more facile extrusion of sulfur dioxide relative to that of sulfur monoxide. In fact, the same effect is probably operative in the case of the cis- and trans-diphenylthiirane oxides (16g,h)110 compared with cis- and trans-diphenylthiirane dioxides (17d,e)99 the former were found to be more stable toward thermal decomposition than the latter. [Pg.402]

Any attempt to separate the two components by the usual chromatographic methods failed owing to the instability of the thiirane oxides, which easily lose sulfur monoxide to give the corresponding olefins152. [Pg.418]

As formal a, /i-unsaturated sulfones and sulfoxides, respectively, both thiirene dioxides (19) and thiirene oxides (18) should be capable, in principle, of undergoing cycloaddition reactions with either electron-rich olefins or serving as electrophilic dipolarophiles in 2 + 3 cycloadditions. The ultimate products in such cycloadditions are expected to be a consequence of rearrangements of the initially formed cycloadducts, and/or loss of sulfur dioxide (or sulfur monoxide) following the cycloaddition step, depending on the particular reaction conditions. The relative ease of the cycloaddition should provide some indication concerning the extent of the aromaticity in these systems2. [Pg.426]

The main result of the thermolysis of the three-membered ring sulfoxides and sulfones is the extrusion of the sulfur monoxide and the sulfur dioxide moieties (Section III.C. I)99 10 5. Only in the presence of a suitably disposed /J-hydrogen does the ordinary sulfoxide-sulfenic acid fragmentation take place in the thiirane oxide series (equation 9). [Pg.450]

The photolysis of various substituted thiete dioxides under similar conditions resulted in the formation of the unsaturated ketones (255)264, most probably via a vinyl sulfene intermediate followed by a loss of sulfur monoxide as shown in equation 96. The same results were obtained in the thermolysis of 6e (R1 = R3 = Ph R2 = R4 = H)231, which further demonstrates that similar mechanisms are operative in thermolyses and pho-tolyses of thietane dioxides and thiete dioxides. [Pg.453]

Episulfides can be converted to alkenes. " However, in this case the elimination is syn, so the mechanism cannot be the same as that for conversion of epoxides. The phosphite attacks sulfur rather than carbon. Among other reagents that convert episulfides to alkenes are Bu3SnH, certain rhodium complexes, LiAlH4 (this compound behaves quite differently with epoxides, see 10-85), and methyl iodide.Episulfoxides can be converted to alkenes and sulfur monoxide... [Pg.1341]

The sulfur-rich oxides S 0 and S 02 belong to the group of so-called lower oxides of sulfur named after the low oxidation state of the sulfur atom(s) compared to the best known oxide SO2 in which the sulfur is in the oxidation state +4. Sulfur monoxide SO is also a member of this class but is not subject of this review. The blue-green material of composition S2O3 described in the older literature has long been shown to be a mixture of salts with the cations S4 and Ss and polysulfate anions rather than a sulfur oxide [1,2]. Reliable reviews on the complex chemistry of the lower sulfur oxides have been published before [1, 3-6]. The present review deals with those sulfur oxides which contain at least one sulfur-sulfur bond and not more than two oxygen atoms. These species are important intermediates in a number of redox reactions of elemental sulfur and other sulfur compounds. [Pg.204]

Pyrolysis of the parent thiirane oxide 16a monitored by microwave spectroscopy led to the conclusion that the sulfur monoxide is generated in its triplet ground state, although the singlet state ( A) cannot be excluded completely (equation 8). A later study presented evidence, based on the stereoselective addition to dienes of sulfur monoxide generated from thiirane oxide as well as thermochemical data, that the ground state S is formed exclusively ° . ... [Pg.400]

In the presence of a suitably disposed /i-hydrogen—as in alkyl-substituted thiirane oxides such as 16c—an alternative, more facile pathway for thermal fragmentation is available . In such cases the thiirene oxides are thermally rearranged to the allylic sulfenic acid, 37, similarly to the thermolysis of larger cyclic and acyclic sulfoxides (see equation 9). In sharp contrast to this type of thiirane oxide, mono- and cis-disubstituted ones have no available hydrogen for abstraction and afford on thermolysis only olefins and sulfur monoxide . However, rapid thermolysis of thiirane oxides of type 16c at high temperatures (200-340 °C), rather than at room temperature or lower, afforded mixtures of cis- and trans-olefins with the concomitant extrusion of sulfur monoxide . The rationale proposed for all these observations is that thiirane oxides may thermally... [Pg.400]


See other pages where Sulfur monoxide is mentioned: [Pg.76]    [Pg.274]    [Pg.287]    [Pg.139]    [Pg.141]    [Pg.152]    [Pg.156]    [Pg.180]    [Pg.887]    [Pg.131]    [Pg.695]    [Pg.734]    [Pg.227]    [Pg.397]    [Pg.398]    [Pg.400]    [Pg.401]    [Pg.402]    [Pg.426]    [Pg.429]    [Pg.442]    [Pg.461]    [Pg.679]    [Pg.875]    [Pg.397]    [Pg.398]   
See also in sourсe #XX -- [ Pg.204 ]

See also in sourсe #XX -- [ Pg.386 ]

See also in sourсe #XX -- [ Pg.386 ]

See also in sourсe #XX -- [ Pg.911 ]

See also in sourсe #XX -- [ Pg.360 ]

See also in sourсe #XX -- [ Pg.935 ]

See also in sourсe #XX -- [ Pg.917 ]

See also in sourсe #XX -- [ Pg.955 ]

See also in sourсe #XX -- [ Pg.124 , Pg.416 ]

See also in sourсe #XX -- [ Pg.921 ]

See also in sourсe #XX -- [ Pg.36 , Pg.37 , Pg.54 , Pg.55 ]




SEARCH



Carbon monoxide sulfur dioxide poisoning effect

Carbon monoxide, sulfur dioxide

Monoxide and Sulfur

Sulfur carbon monoxide

Sulfur dioxide carbon monoxide oxidation poisoning

Sulfur monoxide complexes

Sulfur monoxide instability

Sulfur monoxide metal complexes

© 2024 chempedia.info