Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flow solution

The measurement of the streaming potential developed when a solution flows through two parallel plates [74-76] allows the characterization of macroscopic surfaces such as mica. [Pg.188]

The solution flow is nomially maintained under laminar conditions and the velocity profile across the chaimel is therefore parabolic with a maximum velocity occurring at the chaimel centre. Thanks to the well defined hydrodynamic flow regime and to the accurately detemiinable dimensions of the cell, the system lends itself well to theoretical modelling. The convective-diffiision equation for mass transport within the rectangular duct may be described by... [Pg.1937]

In many applications in mass spectrometry (MS), the sample to be analyzed is present as a solution in a solvent, such as methanol or acetonitrile, or an aqueous one, as with body fluids. The solution may be an effluent from a liquid chromatography (LC) column. In any case, a solution flows into the front end of a mass spectrometer, but before it can provide a mass spectrum, the bulk of the solvent must be removed without losing the sample (solute). If the solvent is not removed, then its vaporization as it enters the ion source would produce a large increase in pressure and stop the spectrometer from working. At the same time that the solvent is removed, the dissolved sample must be retained so that its mass spectrum can be measured. There are several means of effecting this differentiation between carrier solvent and the solute of interest, and thermospray is just one of them. Plasmaspray is a variant of thermospray in which the basic method of solvent removal is the same, but the number of ions obtained is enhanced (see below). [Pg.71]

This arrangement provides a thin film of liquid sample solution flowing down to a narrow orifice (0.007-cm diameter) through which argon flows at high linear velocity (volume flow is about 0.5-1 1/min). A fine aerosol is produced. This particular nebulizer is efficient for solutions having a high concentration of analyte constituents. [Pg.147]

The sample solution flows onto a piece of fritted glass through which argon gas flows. The flow of argon is broken down into narrow parallel streams of high linear velocity, which meet the thin film of liquid percolating into the pores of the frit. At the interfaces, an aerosol is formed and is blown from the top of the frit. [Pg.147]

In order to maintain a definite contact area, soHd supports for the solvent membrane can be introduced (85). Those typically consist of hydrophobic polymeric films having pore sizes between 0.02 and 1 p.m. Figure 9c illustrates a hoUow fiber membrane where the feed solution flows around the fiber, the solvent—extractant phase is supported on the fiber wall, and the strip solution flows within the fiber. Supported membranes can also be used in conventional extraction where the supported phase is continuously fed and removed. This technique is known as dispersion-free solvent extraction (86,87). The level of research interest in membrane extraction is reflected by the fact that the 1990 International Solvent Extraction Conference (20) featured over 50 papers on this area, mainly as appHed to metals extraction. Pilot-scale studies of treatment of metal waste streams by Hquid membrane extraction have been reported (88). The developments in membrane technology have been reviewed (89). Despite the research interest and potential, membranes have yet to be appHed at an industrial production scale (90). [Pg.70]

Heterogeneous hydrogenation catalysts can be used in either a supported or an unsupported form. The most common supports are based on alurnina, carbon, and siUca. Supports are usually used with the more expensive metals and serve several purposes. Most importandy, they increase the efficiency of the catalyst based on the weight of metal used and they aid in the recovery of the catalyst, both of which help to keep costs low. When supported catalysts are employed, they can be used as a fixed bed or as a slurry (Uquid phase) or a fluidized bed (vapor phase). In a fixed-bed process, the amine or amine solution flows over the immobile catalyst. This eliminates the need for an elaborate catalyst recovery system and minimizes catalyst loss. When a slurry or fluidized bed is used, the catalyst must be separated from the amine by gravity (settling), filtration, or other means. [Pg.259]

Fig. 13. Scanning election micrograph of polyacrylonitrile fibrils formed by spraying a 0.05 wt % polyacrylonitrile in dimetbylform amide solution into CO2 through a 50-//m inner diameter, 18-cm-long no22le at a temperature of 40°C, density of 0.66 g/mL, and solution flow rate of 0.36 ml,/min (118). Fig. 13. Scanning election micrograph of polyacrylonitrile fibrils formed by spraying a 0.05 wt % polyacrylonitrile in dimetbylform amide solution into CO2 through a 50-//m inner diameter, 18-cm-long no22le at a temperature of 40°C, density of 0.66 g/mL, and solution flow rate of 0.36 ml,/min (118).
The lye boHer is usuaHy steam heated but may be direct-fired. Separation efficiency may be iacreased by adding a tower section with bubble-cap trays. To permit the bicarbonate content of the solution to buHd up, many plants are designed to recirculate the lye over the absorber tower with only 20—25% of the solution flowing over this tower passiag through the boHer. Several absorbers may also be used ia series to iacrease absorptioa efficieacies. [Pg.21]

A flow diagram for the system is shown in Figure 5. Feed gas is dried, and ammonia and sulfur compounds are removed to prevent the irreversible buildup of insoluble salts in the system. Water and soHds formed by trace ammonia and sulfur compounds are removed in the solvent maintenance section (96). The pretreated carbon monoxide feed gas enters the absorber where it is selectively absorbed by a countercurrent flow of solvent to form a carbon monoxide complex with the active copper salt. The carbon monoxide-rich solution flows from the bottom of the absorber to a flash vessel where physically absorbed gas species such as hydrogen, nitrogen, and methane are removed. The solution is then sent to the stripper where the carbon monoxide is released from the complex by heating and pressure reduction to about 0.15 MPa (1.5 atm). The solvent is stripped of residual carbon monoxide, heat-exchanged with the stripper feed, and pumped to the top of the absorber to complete the cycle. [Pg.57]

Effective Interfacial Mass-Transfer Area a In a packed tower of constant cross-sectional area S the differential change in solute flow per unit time is given by... [Pg.620]

Solution flow period (several minutesli resin pump stopped (or by-passed)... [Pg.1558]

Start of solution flow period-, resin pump reversed (or by-passed) i resin settles into reservoir... [Pg.1558]

The reactor in Fig. 5 operates as follows. A feed solution containing a given concentration of pollutant is pumped to the adsorbent module at a fixed volumetric flow rate. The module is kept isothermal by a temperature control unit, such as a surrounding water bath. Finally, the concentration of the outlet solution is measured as a function of time from when the feed was introduced to the adsorbent module. These measurements are often plotted as breakthrough curves. Example breakthrough curves for an aqueous acetone solution flowing... [Pg.107]

These scrubbers have had limited use as part of flue gas desulfurization (FGD) systems, but the scrubbing solution flow rate must be carefully controlled to avoid flooding. When absorption is used for VOC control, packed towers are usually more cost effective than impingement plate towers (discussed later). [Pg.448]

Solution flow by gravity to the point of discharge is desirable. When gravity flow is not possible, transfer components should be selected that require little or no dilution. When metering pumps or proportioning weir tanks are used, return of... [Pg.94]

Breakthrough The first appearance in the solution flowing from an ion-ex- change imit of unabsorbed ions similar to those which are depleting the activity of the resin bed. Breakthrough is an indication that regeneration of the resin is necessary. [Pg.436]

A hollow-fiber reverse-osmosis module consists of a shell which houses the hollow fibers (Fig. 11.3). The fibers are grouped together in a bundle with one end sealed and the other open to the atmosphere. The open ends of the fibers are potted into Ml epoxy sealing head plate after which the permeate is collected. The pressurized feed solution (denoted by the shell side fluid) flows radially from a central porous tubular distributor. As the feed solution flows around the outer side of the fibers toward the shell perimeter, the permeate solution penetrates through the fiber wall into the bore side by virtue of reverse osmosis. The permeate is collected at the open ends of the fibers. The reject solution is collected at the porous wall of the shell. [Pg.265]

Figure 9.10 (a) Solution flow, and (h) corresponding flow sheet for the separation by crystallization of astrakanite (Cisternas, 1999)... [Pg.276]

Oxidized solution is delivered from the pumping tank to the top of the absorber tower, where it contacts the gas stream in a counter-current flow. The reduced solution flows from the contactor to the solution flash drum. Hydrocarbon gases that have been dissolved in the solution are flashed and the solution flows to the base of the oxidizer vessel. Air is blown into the oxidizer, and the solution, now re-oxidized, flows to the pumping tank. [Pg.176]

S. Y. Potapenko. Formation of solution inclusions in crystal under effect of solution flow. J Cryst Growth 186 446, 1998. [Pg.924]

FIGURE 6.29 Poly(allylamine hydrochloride). Column Shodex Asahipak GF-7I0 HQ + GF-5I0 HQ + GF-310 HQ. 7.6 mm i.d. x 300 mm x 3. Eluenc LiCI aqueous solution. Flow rate 0.6 mL/min. Detector Shodex Rl. Column temp. 50°C. Sample I %, 50 /cL Poly(allylamine hydrochloride). [Pg.205]


See other pages where Flow solution is mentioned: [Pg.1933]    [Pg.1938]    [Pg.67]    [Pg.68]    [Pg.143]    [Pg.146]    [Pg.146]    [Pg.149]    [Pg.150]    [Pg.474]    [Pg.476]    [Pg.349]    [Pg.382]    [Pg.383]    [Pg.82]    [Pg.489]    [Pg.162]    [Pg.21]    [Pg.118]    [Pg.339]    [Pg.343]    [Pg.51]    [Pg.147]    [Pg.1558]    [Pg.94]    [Pg.317]    [Pg.163]    [Pg.333]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Flowing solutions

© 2024 chempedia.info