Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition-metal surfaces

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Our intention is to give a brief survey of advanced theoretical methods used to detennine the electronic and geometric stmcture of solids and surfaces. The electronic stmcture encompasses the energies and wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric stmcture refers to the equilibrium atomic positions. Quantities that can be derived from the electronic stmcture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), stmctiiral (lattice constants, equilibrium stmctiires), mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also report on teclmiques used to study solid surfaces, with particular examples drawn from chemisorption on transition metal surfaces. [Pg.2201]

In the final section, we will survey the different theoretical approaches for the treatment of adsorbed molecules on surfaces, taking the chemisorption on transition metal surfaces, a particularly difficult to treat yet extremely relevant surface problem [1], as an example. Wliile solid state approaches such as DFT are often used, hybrid methods are also advantageous. Of particular importance in this area is the idea of embedding, where a small cluster of surface atoms around the adsorbate is treated with more care than the surroundmg region. The advantages and disadvantages of the approaches are discussed. [Pg.2202]

XJsorption of gases on to transition metal surfaces is important, and transition metals or alloys are often used as heterogeneous catalysts. [Pg.369]

Organosulfur Adsorbates on Metal and Semiconductor Surfaces. Sulfur compounds (qv) and selenium compounds (qv) have a strong affinity for transition metal surfaces (206—211). The number of reported surface-active organosulfur compounds that form monolayers on gold includes di- -alkyl sulfide (212,213), di- -alkyl disulfides (108), thiophenols (214,215), mercaptopyridines (216), mercaptoanilines (217), thiophenes (217), cysteines (218,219), xanthates (220), thiocarbaminates (220), thiocarbamates (221), thioureas (222), mercaptoimidazoles (223—225), and alkaneselenoles (226) (Fig. 11). However, the most studied, and probably most understood, SAM is that of alkanethiolates on Au(lll) surfaces. [Pg.540]

Fig. 5(a) contains the oxygen and hydrogen density profiles it demonstrates clearly the major differences between the water structure next to a metal surface and near a free or nonpolar surface (compare to Fig. 3). Due to the significant adsorption energy of water on transition metal surfaces (typically of the order of 20-50kJmoP see, e.g., [136]), strong density oscillations are observed next to the metal. Between three and four water layers have also been identified in most simulations near uncharged metal surfaces, depending on the model and on statistical accuracy. Beyond about... Fig. 5(a) contains the oxygen and hydrogen density profiles it demonstrates clearly the major differences between the water structure next to a metal surface and near a free or nonpolar surface (compare to Fig. 3). Due to the significant adsorption energy of water on transition metal surfaces (typically of the order of 20-50kJmoP see, e.g., [136]), strong density oscillations are observed next to the metal. Between three and four water layers have also been identified in most simulations near uncharged metal surfaces, depending on the model and on statistical accuracy. Beyond about...
Crystal growth has, apart from its basic surface science interest, important applications in technology for instance in microelectronics, optoelectronics, recording... However, even the simplest case of homoepitaxy is not perfectly understood. In particular, growth on FCC (111) transition metal surfaces raises some interesting questions. [Pg.378]

S. Papadia, B. Piveteau, D. Spanjaard and M. C. Desjonqudres, Structural Stability of Adislands on FCC(lll) Transition Metal Surfaces, submitted... [Pg.382]

Structural properties of materials Sub-lattice Substrate Surface phonoas Surface defects m transition metals Surface segregation SupeqDlastic properties and lic[uid phase effect Susceptibility... [Pg.516]

Most studies of the effect of alkalis on the adsorption of gases on catalyst surfaces refer to CO, NO, C02, 02, H2 and N2, due to the importance of these adsorbates for numerous industrial catalytic processes (e.g. N2 adsorption in NH3 synthesis, NO reduction by CO). Thus emphasis will be given on the interaction of these molecules with alkali-modified surfaces, especially transition metal surfaces, aiming to the identification of common characteristics and general trends. [Pg.35]

The similar behavior observed for all CO-alkal i-transition metal systems indicates the same type of alkali-CO interactions, irrespective of the nature of the transition metal. Interestingly these work function data confirm that adsorbed CO on alkali modified transition metal surfaces shows overall the behavior of an electron acceptor molecule. [Pg.42]

Unsaturated organic molecules, such as ethylene, can be chemisorbed on transition metal surfaces in two ways, namely in -coordination or di-o coordination. As shown in Fig. 2.24, the n type of bonding of ethylene involves donation of electron density from the doubly occupied n orbital (which is o-symmetric with respect to the normal to the surface) to the metal ds-hybrid orbitals. Electron density is also backdonated from the px and dM metal orbitals into the lowest unoccupied molecular orbital (LUMO) of the ethylene molecule, which is the empty asymmetric 71 orbital. The corresponding overall interaction is relatively weak, thus the sp2 hybridization of the carbon atoms involved in the ethylene double bond is retained. [Pg.52]

The effect of electronegative additives on the adsorption of ethylene on transition metal surfaces is similar to the effect of S or C adatoms on the adsorption of other unsaturated hydrocarbons.6 For example the addition of C or S atoms on Mo(100) inhibits the complete decomposition (dehydrogenation) of butadiene and butene, which are almost completely decomposed on the clean surface.108 Steric hindrance plays the main role in certain cases, i.e the addition of the electronegative adatoms results in blocking of the sites available for hydrocarbon adsorption. The same effect has been observed for saturated hydrocarbons.108,109 Overall, however, and at least for low coverages where geometric hindrance plays a limited role, electronegative promoters stabilize the adsorption of ethylene and other unsaturated and saturated hydrocarbons on metal surfaces. [Pg.70]

J. Paul, and F.M. Hoffmann, Alkali promoted CO bond weakening on aluminum A comparison with transition metal surfaces,/. Chem Phys. 86(9), 5188-5195 (1987). [Pg.85]

It is important to notice that the work function, , of a given solid surface changes significantly with chemisorption. Thus oxygen chemisorption on transition metal surfaces causes up to 1 eV increase in while alkali chemisorption on transition metal surfaces causes up to 3 eV decrease in . In general electronegative, i.e. electron acceptor adsorbates cause an increase in 0 while electropositive, i.e. electron donor adsorbates cause a decrease in 0. Note that in the former case the dipole vector P formed by the adsorbate and the surface points to the vacuum while in the latter case P points to the surface (Fig. 4.20). [Pg.138]

Figure 4.27 presents steady-state potentiostatic r vs 0Na results during NO reduction by H2 on Pt/p"-Al203f2 PInb values well in excess of 4000 are obtained for 0Na values below 0.002. This is due to the tremendous propensity of Na to induce NO dissociation on transition metal surfaces. Since Plj is often found to be strongly dependent on 0, (Figs. 4.26 and 4.27), it is also useful to define a differential promotion index pij from ... [Pg.149]

Figure 6.14d shows the electron donation interaction (electrons are transferred from the initially fully occupied 5a molecular orbitals to the Fermi level of the metal, thus this is an electron donation interaction). Blyholder was first to discuss that CO chemisorption on transition metal involves both donation and backdonation of electrons.4 We now know both experimentally7 and theoretically96,98 that the electron backdonation mechanism is usually predominant, so that CO behaves on most transition metal surfaces as an overall electron acceptor. [Pg.302]

The hydrogenation of CO and C02 on transition metal surfaces is a promising area for using NEMCA to affect rates and selectivities. In a recent study of C02 hydrogenation on Rh,59 where the products were mainly CH and CO, under atmospheric pressure and at temperatures 300 to 500°C it was found that CH4 formation is electrophobic (Fig. 8.54a) while CO formation is electrophilic (Fig. 8.54b). Enhancement factor A values up to 220 were... [Pg.406]

The data presented in Table 1.3 illustrate the dependence of the activation energy of methane on the edge or corner (kink) atom position of some transition-metal surfaces. [Pg.20]

As we discussed in the previous section, the primary parameter that determines the interaction strength between an adsorbate and a (transition) metal surface is the coordinative unsaturation of the surface metal atoms. The lower the coordination number of a surface atom, the larger the interaction with interacting adsorbates. [Pg.23]

Gaussian-type orbitals, the computational requirements grow, in the limit, with the fourth power in the number of basis functions on the SCF level and with even a higher power for methods including correlation. Both the conceptual and the computational aspects prevent the computational study of important problems such as the chemistry of transition metal surfaces, interfaces, bulk compounds, and large molecular systems. [Pg.50]

The interaction of hydrogen (deuterium) molecules with a transition metal surface c an be conveniently described in terms of a Lennard--Jones potential energy diagram (Pig. 1). It cxxislsts of a shallcw molecular precursor well followed by a deep atomic chemisorption potential. Depending on their relative depths and positions the wells m or may not be separated by an activation energy barrier E as schematically Indicated by the dotted cur e in Fig. 1. [Pg.224]


See other pages where Transition-metal surfaces is mentioned: [Pg.2222]    [Pg.2224]    [Pg.2228]    [Pg.357]    [Pg.25]    [Pg.26]    [Pg.30]    [Pg.34]    [Pg.36]    [Pg.39]    [Pg.39]    [Pg.42]    [Pg.50]    [Pg.51]    [Pg.55]    [Pg.56]    [Pg.56]    [Pg.61]    [Pg.63]    [Pg.64]    [Pg.68]    [Pg.299]    [Pg.447]    [Pg.54]    [Pg.66]    [Pg.249]    [Pg.175]    [Pg.327]   
See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.490 ]




SEARCH



A Simple Approach to the Energetics of Surface Defects in Transition Metals

Bonding to Transition Metal Surfaces

Chemical Bonding to Transition-Metal Surfaces

Crystalline transition metal surfaces

Defects on the Surfaces of Transition Metal Oxides

Flat transition metal surfaces

Semiconductors transition metal oxide surfaces

Surface energy of transition metals

Surface reconstructions transition metals

Surface states transition metal surfaces

Surface transition metal ions

Surfaces of transition metals

The Quantum Chemistry of Transition Metal Surface Bonding and Reactivity

Transition Metal Surface Chemistry

Transition metal adsorption surfaces

Transition metal ions, potential energy surface

Transition metal sulfides surface composition

Transition metal surface bonding and reactivity

Transition metal surface composition

Transition metal surface compounds

Transition metal surface group orbitals

Transition metals Fermi surfaces

Transition metals surface characterization

Vacancies transition metal oxide surfaces

© 2024 chempedia.info