Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrolysis continued

For ease of numerical solutions, x = 0 is always located at the top surface as shown in Figure 19.28. The thickness of the unpyrolyzed material also changes as pyrolysis continues. The effective thermal properties (k and c) of the polymer are deduced from the ignition tests as detailed in Section 19.6.3. [Pg.536]

There are several procedures to perform pyrolysis flash pyrolysis (pulse mode), slow gradient heating pyrolysis (continuous mode), step pyrolysis, etc. Commonly, the pyrolysis for analytical purposes is done in pulse mode. This consists of a very rapid heating of the sample from ambient temperature, targeting isothermal conditions at a temperature where the sample is completely pyrolysed. Controlled slow temperature gradients are also possible in pyrolysis, but their use in analytical pyrolysis is limited. Step pyrolysis heats the sample rapidly but in steps, each step following a plateau of constant temperature kept for a limited time period. [Pg.71]

Table 7.2.4. Carbonyl compounds generated in cellulose pyrolysis (continued). Table 7.2.4. Carbonyl compounds generated in cellulose pyrolysis (continued).
For safe disposal of the products without any adverse effects to the environment, such as recycling and subsequent repolymerization, recycling to olefinic feedstock by pyrolysis, continued burial in landfill sites, incineration, and use of environmentally degradable polymers... [Pg.404]

Pyrolysis of pyridine derivatives is a method for allylic and benzylic deamination the preparation of nitriles from aldehydes, and the preparation of isocyanates from acid chlorides or hydrazides Flash vacuum pyrolysis continues to yield interesting reactions and products. Recently, it has been reported that quite sensitive acetylene derivatives can be obtained by this method from 4-alkylideneisoxazol-5(4H)-ones by ring degradation. On the other hand, 2 carbamyl azide molecules cyclize under these conditions to form l,2,4-triazolidine-3,5-dione 1,2-ylids . 2H-Cyclohepta[b]furan-2-ones have been obtained by ring expansion of phenyl propiolates... [Pg.329]

Continuous polymer fibres Polymer pyrolysis Continuous ceramic fibres... [Pg.12]

Continual use of decabromidiphenyl oxide has been placed ia question based on the discovery that under certain laboratory conditions brominated dibenzo- -dioxias are generated (63). The condition most often employed ia such studies is pyrolysis of milligram-scale samples at 600°C. This temperature is higher than polymer processiag conditions and lower than fire temperatures, ie, the conditions are not representative of actual conditions to which flame-retardant polymers are exposed. [Pg.472]

A report on the continuous flash pyrolysis of biomass at atmospheric pressure to produce Hquids iadicates that pyrolysis temperatures must be optimized to maximize Hquid yields (36). It has been found that a sharp maximum ia the Hquid yields vs temperature curves exist and that the yields drop off sharply on both sides of this maximum. Pure ceUulose has been found to have an optimum temperature for Hquids at 500°C, while the wheat straw and wood species tested have optimum temperatures at 600°C and 500°C, respectively. Organic Hquid yields were of the order of 65 wt % of the dry biomass fed, but contained relatively large quantities of organic acids. [Pg.23]

Chemicals have long been manufactured from biomass, especially wood (sHvichemicals), by many different fermentation and thermochemical methods. For example, continuous pyrolysis of wood was used by the Ford Motor Co. in 1929 for the manufacture of various chemicals (Table 20) (47). Wood alcohol (methanol) was manufactured on a large scale by destmctive distillation of wood for many years until the 1930s and early 1940s, when the economics became more favorable for methanol manufacture from fossil fuel-derived synthesis gas. [Pg.26]

Aromatic Hydrocarbons. These are the most toxic of the hydrocarbons and inhalation of the vapor can cause acute intoxication. Benzene is particularly toxic and long-term exposure can cause anemia and leukopenia, even with concentrations too low for detection by odor or simple instmments. The currendy acceptable average vapor concentration for benzene is no more than 1 ppm. PolycycHc aromatics are not sufftcientiy volatile to present a threat by inhalation (except from pyrolysis of tobacco), but it is known that certain industrial products, such as coal tar, are rich in polycycHc aromatics and continued exposure of human skin to these products results in cancer. [Pg.370]

WulffProcess. The regenerative technique is best exemplified by the Wulff process, Hcensed by Union Carbide Corp. The furnace consists basically of two masses of high purity alumina refractory tile having cylindrical channels for gas flow and separated by a central combustion space as shown in Figure 10. Its cychc operation has four distinct steps, each of approximately 1 min in duration, the sequence being pyrolysis and heat in one direction followed by pyrolysis and heat in the other direction. Continuity of output is achieved by paired installations. [Pg.389]

Commercially and industrially most important, ketene itself, H2C—C—O, is produced by pyrolysis of acetic acid [64-19-7]. In this process, high quahty acetic acid is evaporated and the vapor passed continuously through a radiant coil under reduced pressure at 740—760°C. [Pg.475]

Liquid Fuels. Liquid fuels can be obtained as by-products of low temperature carbonization by pyrolysis, solvent refining, or extraction and gasification followed by catalytic conversion of either the coal or the products from the coal. A continuing iaterest ia Hquid fuels has produced activity ia each of these areas (44—46). However, because cmde oil prices have historically remained below the price at which synthetic fuels can be produced, commercialization awaits an economic reversal. [Pg.159]

Titanium disulfide can also be made by pyrolysis of titanium trisulfide at 550°C. A continuous process based on the reaction between titanium tetrachloride vapor and dry, oxygen-free hydrogen sulfide has been developed at pilot scale (173). The preheated reactants ate fed iato a tubular reactor at approximately 500°C. The product particles comprise orthogonally intersecting hexagonal plates or plate segments and have a relatively high surface area (>4 /g), quite different from the flat platelets produced from the reaction between titanium metal and sulfur vapor. The powder, reported to be stable to... [Pg.133]

Until 1960, coal was the source material for almost all benzene produced in Europe. Petroleum benzene was first produced in Europe by the United Kingdom in 1952, by Erance in 1958, by the Eederal Republic of Germany in 1961, and by Italy in 1962. Coal has continued to decline as a benzene source in Europe, and this is evident with the closure of coke ovens in Germany (73). Most of the benzene produced in Europe is now derived from petroleum or pyrolysis gasoline. In Europe, pyrolysis gasoline is a popular source of benzene because European steam crackers mn on heavier feedstocks than those in the United States (73). [Pg.44]

The majority of the cyanuric acid produced commercially is made via pyrolysis of urea [57-13-6] (mp 135°C) primarily employing either directiy or indirectly fired stainless steel rotary kilns. Small amounts of CA are produced by pyrolysis of urea in stirred batch or continuous reactors, over molten tin, or in sulfolane. The feed to the kilns can be either urea soHd, melt, or aqueous solution. Since conversion of urea to CA is endothermic and goes through a plastic stage, heat and mass transport are important process considerations. The kiln operates under slight vacuum. Air is drawn into the kiln to avoid explosive concentrations of ammonia (15—27 mol %). [Pg.420]

Beside continuous horizontal kilns, numerous other methods for dry pyrolysis of urea have been described, eg, use of stirred batch or continuous reactors, ribbon mixers, ball mills, etc (109), heated metal surfaces such as moving belts, screws, rotating dmms, etc (110), molten tin or its alloys (111), dielectric heating (112), and fluidized beds (with performed urea cyanurate) (113). AH of these modifications yield impure CA. [Pg.421]


See other pages where Pyrolysis continued is mentioned: [Pg.472]    [Pg.125]    [Pg.146]    [Pg.45]    [Pg.472]    [Pg.125]    [Pg.534]    [Pg.1512]    [Pg.448]    [Pg.1253]    [Pg.472]    [Pg.125]    [Pg.146]    [Pg.45]    [Pg.472]    [Pg.125]    [Pg.534]    [Pg.1512]    [Pg.448]    [Pg.1253]    [Pg.385]    [Pg.24]    [Pg.427]    [Pg.108]    [Pg.354]    [Pg.14]    [Pg.55]    [Pg.188]    [Pg.419]    [Pg.422]    [Pg.422]    [Pg.172]    [Pg.443]    [Pg.123]    [Pg.401]   


SEARCH



Continuous pyrolysis plants

Continuous-mode pyrolysis

Pyrolysis continued) condenser

Pyrolysis continued) drying

Pyrolysis continued) during

Pyrolysis continued) feedstocks

Pyrolysis continued) mechanism

Pyrolysis continued) nitrogenous

Pyrolysis continued) partial oxidation

Pyrolysis continued) performance

Pyrolysis continued) pilot plant

Pyrolysis continued) plant

Pyrolysis continued) process

Pyrolysis continued) processing

Pyrolysis continued) products

Pyrolysis continued) reactor

Pyrolysis continued) rotary kiln

Pyrolysis continued) schematic

Pyrolysis continued) system

Pyrolysis continued) through

Pyrolysis continued) waste

Pyrolysis continued) water, treatment

Wood continued) pyrolysis

© 2024 chempedia.info