Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene oxide direct oxidation process

In this direct propylene-oxidation process, catalyst life is maintained at high levels by periodically interrupting or lowering the flow of oxygen without changing other conditions. Removal of carbon monoxide from the... [Pg.531]

PROPENE The major use of propene is in the produc tion of polypropylene Two other propene derived organic chemicals acrylonitrile and propylene oxide are also starting materials for polymer synthesis Acrylonitrile is used to make acrylic fibers (see Table 6 5) and propylene oxide is one component in the preparation of polyurethane polymers Cumene itself has no direct uses but rather serves as the starting material in a process that yields two valuable indus trial chemicals acetone and phenol... [Pg.269]

Propylene oxide [75-56-9] (methyloxirane, 1,2-epoxypropane) is a significant organic chemical used primarily as a reaction intermediate for production of polyether polyols, propylene glycol, alkanolamines (qv), glycol ethers, and many other useful products (see Glycols). Propylene oxide was first prepared in 1861 by Oser and first polymerized by Levene and Walti in 1927 (1). Propylene oxide is manufactured by two basic processes the traditional chlorohydrin process (see Chlorohydrins) and the hydroperoxide process, where either / fZ-butanol (see Butyl alcohols) or styrene (qv) is a co-product. Research continues in an effort to develop a direct oxidation process to be used commercially. [Pg.133]

Oxirane Process. In Arco s Oxirane process, tert-huty alcohol is a by-product in the production of propylene oxide from a propjiene—isobutane mixture. Polymer-grade isobutylene can be obtained by dehydration of the alcohol. / fZ-Butyl alcohol [75-65-0] competes directly with methyl-/ fZ-butyl ether as a gasoline additive, but its potential is limited by its partial miscibility with gasoline. Current surplus dehydration capacity can be utilized to produce isobutylene as more methyl-/ fZ-butyl ether is diverted as high octane blending component. [Pg.367]

For many years ethylene chlorohydrin was manufactured on a large iadustrial scale as a precursor to ethylene oxide, but this process has been almost completely displaced by the direct oxidation of ethylene to ethylene oxide over silver catalysts. However, siace other commercially important epoxides such as propylene oxide and epichlorohydrin cannot be made by direct oxidation of the parent olefin, chlorohydrin iatermediates are stiU important ia the manufacture of these products. [Pg.73]

You have to talk about propylene oxide and propylene glycol after ethylene oxide and glycol. Its not that the chemical configurations are so similar (they are), or that the process chemistry is about the same (it is). The Fact is that much of the propylene oxide is now made in plants originally designed and constructed to produce EO, not PO. As you read in the last chapter, the chlorohydrin route to EO was abandoned by the 1970s in favor of direct oxidation. At the same time, the EO producers found that the old EO plants were suitable for the production of PO and certainly the cheapest hardware available to satisfy growing PO demands. [Pg.157]

The epoxidation of propylene to propylene oxide is a high-volume process, using about 10% of the propylene produced in the world via one of two processes [127]. The oldest technology is called the chlorohydrin process and uses propylene, chlorine and water as its feedstocks. Due to the environmental costs of chlorine and the development of the more-efficient direct epoxidation over Ti02/Si02 catalysts, new plants all use the hydroperoxide route. The disadvantage here is the co-production of stoichiometric amounts of styrene or butyl alcohol, which means that the process economics are dependent on finding markets not only for the product of interest, but also for the co-product The hydroperoxide route has been practiced commercially since 1979 to co-produce propylene oxide and styrene [128], so when TS-1 was developed, epoxidation was looked at extensively [129]. [Pg.387]

The direct oxidation of ethylene to EO by O2 has now replaced the chlorohydrin process entirely because it is cheaper and involves less byproducts, but propylene oxide (a monomer in polyurethanes) is still made by the chlorohydrin route. [Pg.132]

Direct Oxidation. Direct oxidation of petroleum hydrocarbons has been practiced on a small scale since 1926 methanol, formaldehyde, and acetaldehyde are produced. A much larger project (29) began operating in 1945. The main product of the latter operation is acetic acid, used for the manufacture of cellulose acetate rayon. The oxidation process consists of mixing air with a butane-propane mixture and passing the compressed mixture over a catalyst in a tubular reaction furnace. The product mixture includes acetaldehyde, formaldehyde, acetone, propyl and butyl alcohols, methyl ethyl ketone, and propylene oxide and glycols. The acetaldehyde is oxidized to acetic acid in a separate plant. Thus the products of this operation are the same as those (or their derivatives) produced by olefin hydration and other aliphatic syntheses. [Pg.295]

Ethylene and Propylene Oxides. Ethylene oxide (26) and its derivatives are among the important aliphatic chemicals the 1950 production amounted to between 400,000,000 and 500,000,000 pounds. The chlorohydrin process was introduced in the early 1920 s and the direct oxidation process in the 1930 s, both based on ethylene. In the older process, the one most used today, the ethylene reacts in solution with hypo-chlorous acid at room temperature. [Pg.296]

Acetic Anhydride. Other products recovered from the oxidation of light hydrocarbons (6) are acetic acid and acetic anhydride as well as acetaldehyde, acetone, and isopropyl alcohol, all of which may be converted to acetic acid or the anhydride. The direct oxidation process supplements the production of acetic anhydride from acetone derived from propylene, which has been the principal commercial source of the anhydride. The increasing production of cellulose acetate within recent years has been attributed to the low cost of acetic anhydride from the latter process (44). [Pg.322]

Propylene Chlorohydrin. Propylene chlorohydrin is synthesized with the aim of producing propylene oxide. Although the latter is manufactured commercially mainly by the direct oxidation of propylene, the chlorohydrination process is still in limited use. [Pg.302]

Acrolein and Acrylic Acid. Acrolein and acrylic acid are manufactured by the direct catalytic air oxidation of propylene. In a related process called ammoxida-tion, heterogeneous oxidation of propylene by oxygen in the presence of ammonia yields acrylonitrile (see Section 9.5.3). Similar catalysts based mainly on metal oxides of Mo and Sb are used in all three transformations. A wide array of single-phase systems such as bismuth molybdate or uranyl antimonate and multicomponent catalysts, such as iron oxide-antimony oxide or bismuth oxide-molybdenum oxide with other metal ions (Ce, Co, Ni), may be employed.939 The first commercial process to produce acrolein through the oxidation of propylene, however, was developed by Shell applying cuprous oxide on Si-C catalyst in the presence of I2 promoter. [Pg.510]

Propylene oxide [75-56-9] is manufactured by either the chlorohydrin process or the peroxidation (coproduct) process. In the chlorohydrin process, chlorine, propylene, and water are combined to make propylene chlorohydrin, which then reacts with inorganic base to yield the oxide. The peroxidation process converts either isobutane or ethylbenzene directly to an alkyl hydroperoxide which then reacts with propylene to make propylene oxide, and /-butyl alcohol or methylbenzyl alcohol, respectively. Table 1 lists producers of propylene glycols in the United States. [Pg.365]

In many cases chlorine is used as a mule 10 a linal product which contains no chlorine For instance propylene oxide has traditionally been manufactured by the chlornhydrin process. Modem technology permits abandoning this route in favor of direct oxidalion. thus eliminating a need for chlorine. [Pg.371]

Specifically, propylene oxide has reacted directly with maleic and phthalic anhydrides to produce unsaturated polyesters under these milder conditions (15, 16). This would certainly be a major first step toward simplifying the process and lowering the cost. Incidentally, use of propylene oxide in place of propylene glycol would also result in an additional saving of 1 cent per pound in total raw material cost as well (6). After polyesterification, the separate steps of cooling, dilution with styrene, catalysis, impregnation, gelation, and cure are a distinct operational and economic liability. [Pg.189]

In the study of conjugated processes, of special attention are works by Emanuel [5], who has considered conjugated chain reactions to be of great importance and promising directions of radical reactions. Emanuel et al. have implemented detailed studies in this area. In particular, they suggested an effective method of propylene and acetaldehyde conjugated oxidation [6] for a one-stage synthesis of propylene oxide and acetic acid [7],... [Pg.6]

Basing on investigations carried out, it is shown that the conjugated oxidation of propylene is a controllable process and, with respect to particular conditions, secondary reaction may display three dominant propagation directions as follows ... [Pg.133]

Standard Oil of California added the petrochemicals of Gulf Oil, purchased in 1984, to its subsidiary Chevron Chemical. Other United States petrochemical producers took advantage of special circumstances. Amoco was served by a strong terephthalic (TPA) base and its good performance in polypropylene Arco, by its Lyondell subsidiary in Channelview, Texas, and by its development of the Oxirane process through which propylene oxide could be produced by direct oxidation with styrene as a coproduct. The process also led to MTBE (methyl tertiary-butyl ether), the antiknock agent used as a substitute for tetraethyl lead. [Pg.4]

New synthetic processes for the preparation of established products were also industrially developed in Japan the manufacture of methyl methacrylate from C4 olefins, by Sumitomo and Nippon Shokubai in France, the simultaneous production of hydroquinone and pyro-catechin through hydrogen peroxide oxidation of phenol by Rhone-Poulenc in the United States the production of propylene oxide through direct oxidation of propylene operating jointly with styrene production, developed by Ralph Landau and used in the Oxirane subsidiary with Arco, which the latter fully took over in 1980 in Germany and Switzerland, the synthesis of vitamin A from terpenes, used by BASF and Hoffmann-La Roche. [Pg.14]


See other pages where Propylene oxide direct oxidation process is mentioned: [Pg.300]    [Pg.832]    [Pg.348]    [Pg.604]    [Pg.186]    [Pg.201]    [Pg.186]    [Pg.186]    [Pg.166]    [Pg.318]    [Pg.426]    [Pg.138]    [Pg.6]    [Pg.246]    [Pg.447]    [Pg.115]    [Pg.296]    [Pg.509]    [Pg.348]    [Pg.195]    [Pg.282]    [Pg.481]    [Pg.77]    [Pg.77]    [Pg.1207]    [Pg.171]    [Pg.207]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Direct Process

Direct oxidation

Direct oxidation processes

Directed processes

Directing process

Oxidation directed

Oxidation directive

Propylene direct oxidation

Propylene oxide

Propylene oxide oxidation

© 2024 chempedia.info