Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxirane process

An oxirane process utilizes ethylbenzene to make the hydroperoxide, which then is used to make propylene oxide [75-56-9]. The hydroperoxide-producing reaction is similar to the first step of cumene LPO except that it is slower (2,224,316—318). In the epoxidation step, a-phenylethyl alcohol [98-85-1] is the coproduct. It is dehydrated to styrene [100-42-5]. The reported 1992 capacity for styrene by this route was 0.59 X 10 t/yr (319). The corresponding propylene oxide capacity is ca 0.33 x 10 t/yr. The total propylene oxide capacity based on hydroperoxide oxidation of propylene [115-07-1] (coproducts are /-butyl alcohol and styrene) is 1.05 x 10 t/yr (225). [Pg.345]

The second process involves reaction of propylene with peroxides, as in the Oxirane process (97), in which either isobutane or ethylbenzene is oxidized to form a hydroperoxide. [Pg.129]

It is carried out in the Hquid phase at 100—130°C and catalyzed by a soluble molybdenum naphthenate catalyst, also in a series of reactors with interreactor coolers. The dehydration of a-phenylethanol to styrene takes place over an acidic catalyst at about 225°C. A commercial plant (50,51) was commissioned in Spain in 1973 by Halcon International in a joint venture with Enpetrol based on these reactions, in a process that became known as the Oxirane process, owned by Oxirane Corporation, a joint venture of ARCO and Halcon International. Oxirane Corporation merged into ARCO in 1980 and this process is now generally known as the ARCO process. It is used by ARCO at its Channelview, Texas, plant and in Japan and Korea in joint ventures with local companies. A similar process was developed by Shell (52—55) and commercialized in 1979 at its Moerdijk plant in the Netherlands. The Shell process uses a heterogeneous catalyst of titanium oxide on siHca support in the epoxidation step. Another plant by Shell is under constmction in Singapore (ca 1996). [Pg.484]

There are other commercial processes available for the production of butylenes. However, these are site or manufacturer specific, eg, the Oxirane process for the production of propylene oxide the disproportionation of higher olefins and the oligomerisation of ethylene. Any of these processes can become an important source in the future. More recentiy, the Coastal Isobutane process began commercialisation to produce isobutylene from butanes for meeting the expected demand for methyl-/ rZ-butyl ether (40). [Pg.366]

Oxirane Process. In Arco s Oxirane process, tert-huty alcohol is a by-product in the production of propylene oxide from a propjiene—isobutane mixture. Polymer-grade isobutylene can be obtained by dehydration of the alcohol. / fZ-Butyl alcohol [75-65-0] competes directly with methyl-/ fZ-butyl ether as a gasoline additive, but its potential is limited by its partial miscibility with gasoline. Current surplus dehydration capacity can be utilized to produce isobutylene as more methyl-/ fZ-butyl ether is diverted as high octane blending component. [Pg.367]

There are currentiy three important processes for the production of isobutylene (/) the extraction process using an acid to separate isobutylene (2) the dehydration of tert-huty alcohol, formed in the Arco s Oxirane process and (3) the cracking of MTBE. The expected demand for MTBE wHl preclude the third route for isobutylene production. Since MTBE is likely to replace tert-huty alcohol as a gasoline additive, the second route could become an important source for isobutylene. Nevertheless, its avaHabHity wHl be limited by the demand for propylene oxide, since it is only a coproduct. An alternative process is emerging that consists of catalyticaHy hydroisomerizing 1-butene to 2-butenes (82). In this process, trace quantities of butadienes are also hydrogenated to yield feedstocks rich in isobutylene which can then be easHy separated from 2-butenes by simple distHlation. [Pg.368]

Butylene Oxide. Butylene oxides are prepared on a small scale by Dow by chlorohydrin technology. There appears to be no technical reason why they could not be prepared by the propylene oxide Oxirane process (see Chlorohydrins). [Pg.373]

In the Oxirane process, ethylene is reacted in the liquid phase with acetic acid in the presence of a Te02 catalyst at approximately 160° and 28 atmospheres. The product is a mixture of mono- and diacetates of ethylene glycol ... [Pg.194]

A higher glycol yield (approximately 94%) than from the ethylene oxide process is anticipated. However, there are certain problems inherent in the Oxirane process such as corrosion caused hy acetic acid and the incomplete hydrolysis of the acetates. Also, the separation of the glycol from unhydrolyzed monoacetate is hard to accomplish. [Pg.195]

Aquaspirillum magnetotacticum magnetotactic, 6,680 Aquation, 1,291 Atco-Oxirane process, 6,327 Arencdiazonium salts carbonylation, 6,290 Arenes... [Pg.86]

Oxirane functionalization, silicone network preparation via, 22 568 Oxirane processes, 4 416 23 342 24 172 4-Oxo-9,ll,13-octadecatrienoic (licanic) acid... [Pg.662]

There are three important processes for the production of isobutylene (1) die extraction process using an add to separate isobutylene (2) the dehydration of fer/-butyl alcohol, formed in the Arco s Oxirane process ... [Pg.264]

There are several alternatives to the polluting chlorohydrin route. One is the styrene monomer propene oxide (SMPO) process, used by Shell and Lyondell (Figure 1.6a) [14]. It is less polluting, but couples the epoxide production to that of styrene, a huge-volume product. Thus, this route depends heavily on the styrene market price. Another alternative, the ARCO/Oxirane process, uses a molybdenum... [Pg.8]

An alternative method for the manufacture of styrene (the oxirane process), uses ethylbenzene that is oxidized to the hydroperoxide and reacts with propylene to give phenylmethylcarbinol (or methyl benzyl alcohol) and propylene oxide. The alcohol is then dehydrated at relatively low temperatures (180 to 400°C) by using an acidic silica gel (Si02) or titanium dioxide (Ti02) catalyst. [Pg.491]

Standard Oil of California added the petrochemicals of Gulf Oil, purchased in 1984, to its subsidiary Chevron Chemical. Other United States petrochemical producers took advantage of special circumstances. Amoco was served by a strong terephthalic (TPA) base and its good performance in polypropylene Arco, by its Lyondell subsidiary in Channelview, Texas, and by its development of the Oxirane process through which propylene oxide could be produced by direct oxidation with styrene as a coproduct. The process also led to MTBE (methyl tertiary-butyl ether), the antiknock agent used as a substitute for tetraethyl lead. [Pg.4]

Figure 8 Examples of oxygen transfer to different substrates using hydroperoxo or alkylperoxo species A, the epoxidation of olefins catalyzed by Mo (VI) complexes as in the Oxirane process B, the Baeyer-Villiger oxidation of ketones catalyzed by Pt(II) complexes C, the epoxidation of olefins catalyzed by Ti(IV) silicates D, the oxidation of organic sulfides catalyzed by V(V) complexes. Figure 8 Examples of oxygen transfer to different substrates using hydroperoxo or alkylperoxo species A, the epoxidation of olefins catalyzed by Mo (VI) complexes as in the Oxirane process B, the Baeyer-Villiger oxidation of ketones catalyzed by Pt(II) complexes C, the epoxidation of olefins catalyzed by Ti(IV) silicates D, the oxidation of organic sulfides catalyzed by V(V) complexes.
Fig. 6.11. Manufacture of styrene and propylene oxide from ethylbenzene and propylene. ARCO Chemical (Oxirane) process. Fig. 6.11. Manufacture of styrene and propylene oxide from ethylbenzene and propylene. ARCO Chemical (Oxirane) process.
Two variants of the Oxirane process are used (Figure 1) for the commercial production of propene oxide (PO) [29]. They differ in the hydrocarbon (isobutane or ethylbenzene (EB)) that is the precursor of the hydroperoxide, and, hence, in the alcohol co-product. ARCO operates both processes using a homogeneous molybdenum catalyst. Shell, in contrast, operates only the EB variant and uses a heterogeneous Ti /Si02 catalyst. [Pg.417]

The Oxirane process is a mature technology that has stood the test of time. Both ARCO and Shell have been successfully operating for more than two decades. More recently a heterogeneous titanium-substituted silicalite (TS-1) catalyst was developed by Enichem [43, 44]. In contrast to the Shell Ti /Si02 catalyst, TS-1 has a hydrophobic surface and is a remarkably effective catalyst for a variety of liquid-phase oxidations with 30 % aqueous hydrogen peroxide, including epoxidation [44]. It has been commercialized for the hydroxylation of phenol to... [Pg.421]


See other pages where Oxirane process is mentioned: [Pg.711]    [Pg.372]    [Pg.199]    [Pg.192]    [Pg.157]    [Pg.1084]    [Pg.1085]    [Pg.1447]    [Pg.1085]    [Pg.372]    [Pg.711]    [Pg.269]    [Pg.413]    [Pg.417]    [Pg.417]    [Pg.1348]   
See also in sourсe #XX -- [ Pg.45 ]

See also in sourсe #XX -- [ Pg.201 ]

See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Arco-Oxirane process

Commercial Oxirane Processes

Oxiranes catalytic processes

Oxiranes stoichiometric processes

Processes oxirane process

Processes oxirane process

Propylene oxide oxirane processes

© 2024 chempedia.info