Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorohydrin propylene

Propylene Chlorohydrin. Propylene chlorohydrin is synthesized with the aim of producing propylene oxide. Although the latter is manufactured commercially mainly by the direct oxidation of propylene, the chlorohydrination process is still in limited use. [Pg.302]

In an older version of the synthesis, propylene and chlorine react in an aqueous solution to form propylene chlorohydrin.192-194 The slightly exothermic reaction maintains the 30-40°C reaction temperature to yield isomeric propylene chlorohy-drins (l-chloro-2-propanol/2-chloro-1-propanol = 9 1). The main byproduct is 1,2-dichloropropane formed in amounts up to 10%. The product propylene chlorohydrin then undergoes saponification to propylene oxide with calcium hydroxide or sodium hydroxide. [Pg.302]

Propylene chlorohydrin is o colorless liquid with o milic odor it is freely soluble in woter. It is largely used in organic syntheses, for the purpose of introducing the hydroxypropyl group. [Pg.132]

Acidity a HCl Absolute viscoalty 20 C Apparent apecific gravity 20/20 C Boiling point 760 mm Hg [Pg.132]

Flash point (Cleveland O. C. ) Molecular weight Solubility in water [Pg.132]

Acidity as HCl Boiling point Boiling range 760 mm Coefficient of expansion per C [Pg.132]

Nonvolatile matter Refractive index Solubility in water 20 C [Pg.132]


CH3 CH0H CH20H, a colourless, almost odourless liquid. It has a sweet taste, but is more acrid than ethylene glycol b.p. 187. Manufactured by heating propylene chlorohydrin with a solution of NaHCO under pressure. It closely resembles dihydroxyethane in its properties, but is less toxic. Forms mono-and di-esters and ethers. Used as an anti-freeze and in the preparation of perfumes and flavouring extracts, as a solvent and in... [Pg.139]

Propylene oxide [75-56-9] is manufactured by either the chlorohydrin process or the peroxidation (coproduct) process. In the chlorohydrin process, chlorine, propylene, and water are combined to make propylene chlorohydrin, which then reacts with inorganic base to yield the oxide. The peroxidation process converts either isobutane or ethylbenzene direcdy to an alkyl hydroperoxide which then reacts with propylene to make propylene oxide, and /-butyl alcohol or methylbenzyl alcohol, respectively. Table 1 Hsts producers of propylene glycols in the United States. [Pg.365]

The chlorohydrin process involves reaction of propylene and chlorine in the presence of water to produce the two isomers of propylene chlorohydrin. This is followed by dehydrochlorination using caustic or lime to propylene oxide and salt. The Dow Chemical Company is the only practitioner of the chlorohydrin process in North America. However, several companies practice the chlorohydrin process at more than 20 locations in Germany, Italy, Bra2il, Japan, Eastern Europe, and Asia. [Pg.136]

Chlorohydrination. The mechanism for the formation of propylene chlorohydrin is generally beheved to be through the chloronium ion intermediate (109,112). [Pg.136]

The chloronium ion intermediate can react with water to produce the desired propylene chlorohydrin, with chloride ion to produce 1,2-dichloropropane, or with propylene chlorohydrin to produce isomers of dichloro-dipropyl ether. [Pg.136]

The l-chloro-2-propanol isomer represents about 85% of the chlorohydrin produced. In order to minimise the formation of dichlotide coproduct and ether, the reactant compositions are chosen such that the effluent Hquid contains 4—5 wt % propylene chlorohydrin. Under these conditions, the yield of chlorohydrin, dichloride, and ether from the reactants is reported to be 87—90, 6—9, and 2%, respectively (109,110,112). [Pg.137]

In two proposed alternative processes, the chlorine is replaced in the hypochlorination reaction by hypochlorous acid [7790-92-3] HOCl, or tert-huty hypochlorite. In the first, a concentrated (>10% by weight) aqueous solution of hypochlorous acid, substantially free of chloride, chlorate, and alkah metal ions, is contacted with propylene to produce propylene chlorohydrin (113). The likely mechanism of reaction is the same as that for chlorine, as chlorine is generated in situ through the equiUbrium of chlorine and hypochlorous acid (109). [Pg.137]

Epoxid tion. Epoxidation, also referred to as saponification or dehydrochlorination, of propylene chlorohydrin (both isomers) to propylene oxide is accompHshed using a base, usually aqueous sodium hydroxide or calcium hydroxide. [Pg.137]

Table 2 gives physical property data for propylene chlorohydrins. 2-Chloro-l-propanol [78-89-7] HOCH2CHCICH2, is also named 2-propylene chlorohydrin, 2-chloropropyl alcohol, or 2-chloro-l-hydroxypropane. l-Chloro-2-propanol [127-00-4] CICH2CHOHCH2, also known as j -propjlene chlorohydrin, 1-chloroisopropyl alcohol, and l-chloro-2-hydroxypropane, is a colorless Hquid, miscible in water, ethanol, and ethyl ether. [Pg.70]

Hydrolysis to Glycols. Ethylene chlorohydrin and propylene chlorohydrin may be hydrolyzed ia the presence of such bases as alkaU metal bicarbonates sodium hydroxide, and sodium carbonate (31—33). In water at 97°C, l-chloro-2-propanol forms acid, acetone, and propylene glycol [57-55-6] simultaneously the kinetics of production are first order ia each case, and the specific rate constants are nearly equal. The relative rates of solvolysis of... [Pg.73]

Yields of propylene chlorohydrin range from 87—90% with dichloropropane yields of 6—9%. The dichloropropane is not only a yield loss but also represents a disposal problem as few uses are known for this material. Since almost all the propylene chlorohydrin is dehydrochlorinated to propylene oxide with lime or sodium hydroxide, none of the chlorine appears in the final product. Instead, it ends up as dilute calcium or sodium chloride solutions, which usually contain small amounts of propylene glycol and other organic compounds that can present significant disposal problems. [Pg.74]

There have been a number of cell designs tested for this reaction. Undivided cells using sodium bromide electrolyte have been tried (see, for example. Ref. 29). These have had electrode shapes for in-ceU propylene absorption into the electrolyte. The chief advantages of the electrochemical route to propylene oxide are elimination of the need for chlorine and lime, as well as avoidance of calcium chloride disposal (see Calcium compounds, calcium CHLORIDE Lime and limestone). An indirect electrochemical approach meeting these same objectives employs the chlorine produced at the anode of a membrane cell for preparing the propylene chlorohydrin external to the electrolysis system. The caustic made at the cathode is used to convert the chlorohydrin to propylene oxide, reforming a NaCl solution which is recycled. Attractive economics are claimed for this combined chlor-alkali electrolysis and propylene oxide manufacture (135). [Pg.103]

Reaction of dibenzylamine with ethylene oxide affords the amino alcohol, 82. Treatment of that product with thionyl chloride gives the a-sympathetic blocking agent, dibenamine (83). (Condensation of phenol with propylene chlorohydrin (84) gives the alcohol, 85. Reaction with thionyl chloride affords the chloride (86). Use of the halide to alkylate ethanolamine affords the secondary amine (87). Alkylation of this last with benzyl chloride... [Pg.55]

The main method to obtain propylene oxide is chlorohydrination followed by epoxidation. This older method still holds a dominant role in propylene oxide production. Chlorohydrination is the reaction between an olefin and hypochlorous acid. When propylene is the reactant, propylene chlorohydrin is produced. The reaction occurs at approximately 35°C and normal pressure without any catalyst ... [Pg.221]

CH2=CH2 + Cl2 + h2o = CH20H-CH2C1 + HC1 Chloroalcohols are important intermediates. Propylene chlorohydrin is made similarly and is used for making propylene oxide by hydrolysis with either calcium hydroxide or sodium hydroxide. If calcium hydroxide is used, the byproduct calcium chloride is useless and must be dumped. If sodium hydroxide is used, the byproduct sodium chloride can be recycled to the Castner-Kellner process. [Pg.64]

The chlorohydrin route takes two steps. The description.of them, unfortunately, is a sentence whose average word length is nine letters reaction of propylene with hypochlorous acid (HO-Cl) followed by dehydrochlorination of the propylene chlorohydrin with calcium hydroxide. Thats a tough way of... [Pg.158]

Two of the reactions calce place in the same reactor in this plant. The formation of the hypochlorous acid (HOCl) from chlorine and water, and the reaction with propylene all occur simultaneously on the left in Figure 11—2. Propylene reacts readily with chlorine to form that unwanted by-product, propylene dichloride. To limit that, the HOCl and HCl are kept very dilute. But as a consequence, the concentration of the propylene leaving the reactor is very low—only 3—5% Ac any higher concentration, a separate phase or second layer in the reactor would form. It would preferentially suck up (dissolve) the propylene and chlorine coming in, leading to runaway dichloride yields. The low concentration levels of the propylene chlorohydrin and the need to recycle so many pounds of material is the reason the process is so energy intensive. It just takes a lot of electricity to pump all that stuff around. [Pg.160]

The dilute propylene chlorohydrin stream is mixed with a solution of... [Pg.160]

Olsen GW, Lacy SE, Bodner KM, et al Mortality from pancreatic and lymphopoietic cancer among workers in ethylene and propylene chlorohydrin production. Occup Environ Med 54(8) 592-8, 1997... [Pg.318]


See other pages where Chlorohydrin propylene is mentioned: [Pg.94]    [Pg.94]    [Pg.330]    [Pg.330]    [Pg.330]    [Pg.330]    [Pg.283]    [Pg.818]    [Pg.818]    [Pg.514]    [Pg.347]    [Pg.136]    [Pg.137]    [Pg.70]    [Pg.73]    [Pg.103]    [Pg.2073]    [Pg.242]    [Pg.113]    [Pg.345]    [Pg.221]    [Pg.970]    [Pg.305]    [Pg.767]    [Pg.159]    [Pg.317]    [Pg.318]    [Pg.115]   
See also in sourсe #XX -- [ Pg.159 ]

See also in sourсe #XX -- [ Pg.113 ]

See also in sourсe #XX -- [ Pg.123 ]

See also in sourсe #XX -- [ Pg.113 ]

See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Chlorohydrin

Chlorohydrination

Chlorohydrins

Propylene Chlorohydrine

© 2024 chempedia.info