Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers isomers

Along with the isomerism of linear copolymers due to various distributions of different monomeric units in their chains, other kinds of isomerisms are known. They can appear even in homopolymer molecules, provided several fashions exist for a monomer to enter in the polymer chain in the course of the synthesis. So, asymmetric monomeric units can be coupled in macromolecules according to "head-to-tail" or "head-to-head"—"tail-to-tail" type of arrangement. Apart from such a constitutional isomerism, stereoisomerism can be also inherent to some of the polymers. Isomers can sometimes substantially vary in performance properties that should be taken into account when choosing the kinetic model. The principal types of such an account are analogous to those considered in the foregoing. The only distinction consists in more extended definition of possible states of a stochastic process of conventional movement along a polymer chain. [Pg.171]

The complex [Cu(SCN)(dpt)]. [dpt = 2,4-bis(4-pyT-idyl)-1.3.5-triazine] exhibits structural supramolecular isomerism, with the two isomers adopting either a three-dimensional lattice A or a one-dimensional ribbon polymer Isomer A exhibits N3S binding via two dpt... [Pg.1422]

A monomer unit with one chiral or asymmetric center (C-atom with 4 different substituents) exists in two different stereoisomers (enantiomers). Three distinct polymer isomers can be obtained. An isotactic (it) polymer can be described by only one species of configurational unit (the same enantiomers are... [Pg.50]

The allyl bromides formed by method (A) contain 25% of the undesired (Z)-isomer. The selectivity of the palladium-catalyzed amination can be steered by the application of polymer-bound systems (see section 2.6.3 B. M. Trost, 1978),... [Pg.303]

In this section we shall consider three types of isomerism which are encountered in polymers. These are positional isomerism, stereo isomerism, and geometrical isomerism. We shall focus attention on synthetic polymers and shall, for the most part, be concerned with these types of isomerism occurring singly, rather than in combination. The synthetic and analytical aspects of stereo isomerism will be considered in Chap. 7. Our present concern is merely to introduce the possibilities of these isomers and some of the vocabulary associated with them. [Pg.23]

Polymers of chloroprene (structure [XII]) are called neoprene and copolymers of butadiene and styrene are called SBR, an acronym for styrene-butadiene rubber. Both are used for many of the same applications as natural rubber. Chloroprene displays the same assortment of possible isomers as isoprene the extra combinations afforded by copolymer composition and structure in SBR offsets the fact that structures [XIIll and [XIV] are identical for butadiene. [Pg.29]

Although the conditions of the polymerization reaction may be chosen to optimize the formation of one specific isomer, it is typical in these systems to have at least some contribution of all possible isomers in the polymeric product, except in the case of polymers of biological origin, like natural rubber and gutta-percha. [Pg.29]

The polymerization of j3-carboxymethyl caprolactam has been observed to consist of initial isomerization via a second-order kinetic process followed by condensation of the isomer to polymer ... [Pg.339]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

Upon treatment with suitable cobalt complexes, methylbutynol cyclizes to a 1,2,4-substituted benzene. Nickel complexes give the 1,3,5-isomer (196), sometimes accompanied by linear polymer (25) or a mixture of tetrasubstituted cyclooctatetraenes (26). [Pg.113]

The value of many chemical products, from pesticides to pharmaceuticals to high performance polymers, is based on unique properties of a particular isomer from which the product is ultimately derived. Eor example, trisubstituted aromatics may have as many as 10 possible geometric isomers whose ratio ia the mixture is determined by equiHbrium. Often the purity requirement for the desired product iacludes an upper limit on the content of one or more of the other isomers. This separation problem is a compHcated one, but one ia which adsorptive separation processes offer the greatest chances for success. [Pg.303]

Terpolymers from dimethy]-a.-methy]styrene (3,4-isomer preferred)—a-methylstyrene—styrene blends in a 1 1 1 weight ratio have been shown to be useful in adhesive appHcations. The use of ring-alkylated styrenes aids in the solubiHty of the polymer in less polar solvents and polymeric systems (75). Monomer concentrations of no greater than 20% and temperatures of less than —20° C are necessary to achieve the desired properties. [Pg.356]

Increa sing the bulkiness of the alkyl group from the esterifying alcohol in the ester also restricts the motion of backbone polymer chains past each other, as evidenced by an increase in the T within a series of isomers. In Table 1, note the increase in T of poly(isopropyl methacrylate) over the / -propyl ester and similar trends within the butyl series. The member of the butyl series with the bulkiest alcohol chain, poly(/-butyl methacrylate), has a T (107°C) almost identical to that of poly(methyl methacrylate) (Tg = 105° C), whereas the butyl isomer with the most flexible alcohol chain, poly( -butyl methaciylate), has a T of 20°C. Further increase in the rigidity and bulk of the side chain increases the T. An example is poly(isobomyl methacrylate)... [Pg.261]

Other minor raw materials are used for specific needs. Eumaric acid [110-17-8] the geometric isomer of maleic acid, is selected to maximize thermal or corrosion performance and is the sole acid esterified with bisphenol A diol derivatives to obtain optimum polymer performance. CycloaUphatics such as hydrogenated bisphenol A (HBPA) and cyclohexanedimethanol (CHDM) are used in selective formulations for electrical apphcations. TetrahydrophthaUc anhydride [85-43-8] (THPA) can be used to improve resiUence and impart useful air-drying properties to polyester resins intended for coating or lining apphcations. [Pg.313]

For all three diallyl phthalate isomers, gelation occurs at nearly the same conversion DAP prepolymer contains fewer reactive allyl groups than the other isomeric prepolymers (36). More double bonds are lost by cyclisation in DAP polymerisation, but this does not affect gelation. The heat-distortion temperature of cross-linked DAP polymer is influenced by the initiator chosen and its concentration (37). Heat resistance is increased by electron beam irradiation. [Pg.84]

Cycloahphatic diamines which have reacted with diacids to form polyamides generate performance polymers whose physical properties are dependent on the diamine geometric isomers. (58,74). Proprietary transparent thermoplastic polyadipamides have been optimized by selecting the proper mixtures of PDCHA geometric isomers (32—34) for incorporation (75) ... [Pg.212]

Only a few commercial uses for TDA per se have been found. In epoxy curing appHcations, 2,4- I DA has been used as a component of a eutectic mixture with short chain aUphatic glycidal ether resins (46) as well as by itself (46,47) TDA (46) and single isomers (47) are also used as amine curatives. TDA can be used as a chain extender in polyurethanes (48,49). TDA is cited as a monomer in making aromatic polymers with unique properties, eg, amorphous polyamides (50), powdered polyamides (51), and low melting, whoUy aromatic polyamides (52). [Pg.239]

Until the mid-1960s, phenylenediamines were used primarily for oxidative purposes the para isomer was of major importance. Since then, the use of phenylenediamines to manufacture polymers has far exceeded their use for oxidative purposes. The y -phenylenediamines, (2,4 and 2,6)-toluenediamine, are widely used for the manufacture of polyurethanes. Phenylenediamines are dihinctional and react with other dihinctional compounds, such as dianhydrides, diacyl chlorides, dicarboxyHc acids, and disulfonyl chlorides to give polyamides. Phenylenediamines also give polymers with epoxides, diols, diacetals. [Pg.254]

Polymers from the meta isomer are useful for their heat and flame resistance polymers from the para isomer are noted for high tensile strength and high modulus. [Pg.255]

Chloroprene Elastomers. Polychloroprene is a polymer of 2-chloro-l,3-butadiene. The elastomer is largely composed of the trans isomer. There are two basic polymer types the W-type and the G-type. G-types are made by using a sulfur-modified process W-types use no sulfur modification. As a result, G-types possess excellent processing and dynamic properties, and tend to be used in V-belts. However, they have poorer aging properties than W-types. The W-types tend to be used in appHcations requiring better aging, such as roUs and mechanical goods (see Elastomers, SYNTHETIC-POLYCm.OROPRENE). [Pg.233]

Methylene-5,5-disahcyhc acid is produced by heating two parts sahcyhc acid with 1—1.5 parts of 30—40 wt % formaldehyde in the presence of an acid catalyst (33). The resulting product is a mixture of isomers, primarily the 5,5 -isomer and small amounts of low molecular weight polymers. It is used as an intermediate in the production of bacitracin methylenedisahcylate, which is used in a feed supplement to promote growth and as a medicament in swine, feedlot catde, as well as chickens, turkeys, pheasants, and quail. [Pg.290]

Ethyltoluene is manufactured by aluminum chloride-cataly2ed alkylation similar to that used for ethylbenzene production. All three isomers are formed. A typical analysis of the reactor effluent is shown in Table 9. After the unconverted toluene and light by-products are removed, the mixture of ethyltoluene isomers and polyethyltoluenes is fractionated to recover the meta and para isomers (bp 161.3 and 162.0°C, respectively) as the overhead product, which typically contains 0.2% or less ortho isomer (bp 165.1°C). This isomer separation is difficult but essential because (9-ethyltoluene undergoes ring closure to form indan and indene in the subsequent dehydrogenation process. These compounds are even more difficult to remove from vinyltoluene, and their presence in the monomer results in inferior polymers. The o-ethyltoluene and polyethyltoluenes are recovered and recycled to the reactor for isomerization and transalkylation to produce more ethyltoluenes. Fina uses a zeoHte-catalyzed vapor-phase alkylation process to produce ethyltoluenes. [Pg.489]


See other pages where Polymers isomers is mentioned: [Pg.633]    [Pg.92]    [Pg.148]    [Pg.99]    [Pg.633]    [Pg.195]    [Pg.1303]    [Pg.392]    [Pg.705]    [Pg.116]    [Pg.633]    [Pg.92]    [Pg.148]    [Pg.99]    [Pg.633]    [Pg.195]    [Pg.1303]    [Pg.392]    [Pg.705]    [Pg.116]    [Pg.79]    [Pg.24]    [Pg.315]    [Pg.431]    [Pg.329]    [Pg.331]    [Pg.534]    [Pg.504]    [Pg.127]    [Pg.148]    [Pg.299]    [Pg.348]    [Pg.87]    [Pg.253]    [Pg.256]    [Pg.190]    [Pg.489]   
See also in sourсe #XX -- [ Pg.497 ]




SEARCH



Biomedical polymers isomers

Branched polymers isomers

Cross-linked polymers isomers

Isomer of polymers

Linear polymers isomers

Polymer copolymers, isomers

© 2024 chempedia.info