Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomers chloroprene

Chloro 1 3 butadiene (chloroprene) is the monomer from which the elastomer neoprene IS prepared 2 Chloro 1 3 butadiene is the thermodynamically controlled product formed by addi tion of hydrogen chloride to vinylacetylene (H2C=CHC=CH) The principal product under conditions of kinetic control is the allenic chlonde 4 chloro 1 2 butadiene Suggest a mechanism to account for the formation of each product... [Pg.420]

At one time, the only commercial route to 2-chloro-1,3-butadiene (chloroprene), the monomer for neoprene, was from acetylene (see Elastomers, synthetic). In the United States, Du Pont operated two plants in which acetylene was dimeri2ed to vinylacetylene with a cuprous chloride catalyst and the vinyl-acetylene reacted with hydrogen chloride to give 2-chloro-1,3-butadiene. This process was replaced in 1970 with a butadiene-based process in which butadiene is chlorinated and dehydrochlorinated to yield the desired product (see Chlorocarbonsandchlorohydrocarbons). [Pg.393]

Many synthetic latices exist (7,8) (see Elastomers, synthetic). They contain butadiene and styrene copolymers (elastomeric), styrene—butadiene copolymers (resinous), butadiene and acrylonitrile copolymers, butadiene with styrene and acrylonitrile, chloroprene copolymers, methacrylate and acrylate ester copolymers, vinyl acetate copolymers, vinyl and vinyUdene chloride copolymers, ethylene copolymers, fluorinated copolymers, acrylamide copolymers, styrene—acrolein copolymers, and pyrrole and pyrrole copolymers. Many of these latices also have carboxylated versions. [Pg.23]

Rubbers. Plasticizers have been used in mbber processing and formulations for many years (8), although phthaHc and adipic esters have found Htde use since cheaper alternatives, eg, heavy petroleum oils, coal tars, and other predominandy hydrocarbon products, are available for many types of mbber. Esters, eg, DOA, DOP, and DOS, can be used with latex mbber to produce large reductions in T. It has been noted (9) that the more polar elastomers such as nitrile mbber and chloroprene are insufficiendy compatible with hydrocarbons and requite a more specialized type of plasticizer, eg, a phthalate or adipate ester. Approximately 50% of nitrile mbber used in Western Europe is plasticized at 10—15 phr (a total of 5000—6000 t/yr), and 25% of chloroprene at ca 10 phr (ca 2000 t/yr) is plasticized. Usage in other elastomers is very low although may increase due to toxicological concerns over polynuclear aromatic compounds (9). [Pg.129]

Tires, natural mbber tubes, and butyl tubes are the main sources of scrap and reclaim (see Elastomers, synthetic-polyisoprene). Specialty reclaim materials are made from scrap siUcone, chloroprene (CR), nitrile— butadiene (NBR), and ethylene—propjlene—diene—terpolymer (EPDM) mbber scraps (see... [Pg.19]

Fig. 1. SAE J200 Classification system for ASTM No. 3 oil where in volume swell nr = no requirement. EPDM is ethylene—propylene—diene monomer HR, butyl mbber SBR, styrene—butadiene mbber NR, natural mbber VMQ, methyl vinyl siUcone CR, chloroprene FKM, fluoroelastomer FVMQ, fluorovinyl methyl siUcone ACM, acryUc elastomers HSN, hydrogenated nitrile ECO, epichlorohydrin and NBR, nitrile mbber. Fig. 1. SAE J200 Classification system for ASTM No. 3 oil where in volume swell nr = no requirement. EPDM is ethylene—propylene—diene monomer HR, butyl mbber SBR, styrene—butadiene mbber NR, natural mbber VMQ, methyl vinyl siUcone CR, chloroprene FKM, fluoroelastomer FVMQ, fluorovinyl methyl siUcone ACM, acryUc elastomers HSN, hydrogenated nitrile ECO, epichlorohydrin and NBR, nitrile mbber.
Chloroprene Elastomers. Polychloroprene is a polymer of 2-chloro-l,3-butadiene. The elastomer is largely composed of the trans isomer. There are two basic polymer types the W-type and the G-type. G-types are made by using a sulfur-modified process W-types use no sulfur modification. As a result, G-types possess excellent processing and dynamic properties, and tend to be used in V-belts. However, they have poorer aging properties than W-types. The W-types tend to be used in appHcations requiring better aging, such as roUs and mechanical goods (see Elastomers, SYNTHETIC-POLYCm.OROPRENE). [Pg.233]

Principal uses include automotive V-belts, industrial and hydraulic hose, specialty roofing, heels and soles in footwear, wine coveting, and a wide variety of coated fabric uses, eg, rafts. Chloroprene elastomers are also used extensively in adhesives (qv). It is estimated that about 77,000 t of chloroprene are used each year in the United States. The two main suppHers of chloroprene elastomers in the United States are DuPont and Bayer. In addition, Distiguil (France) sells polymers through the A. Schulman Company. [Pg.233]

Chlorinated polyethylene (CPE) has excellent o2one, oil, and heat resistance. In addition chlorinated polyethylene has replaced chloroprene elastomers. CPE has a lower specific gravity than chloroprene compounds and produces compounds that are similar to CR in properties but with lower costs. In addition, due to high levels of chlorine in the polymer, the flame resistance of the compounds of CPE are high. [Pg.233]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

Chloroprene (2-chloro-1,3-butadiene), [126-99-8] was first obtained as a by-product from tbe synthesis of divinylacetylene (1). Wben a mbbery polymer was found to form spontaneously, investigations were begun tbat prompdy defined tbe two methods of synthesis that have since been the basis of commercial production (2), and the first successbil synthetic elastomer. Neoprene, or DuPrene as it was first called, was introduced in 1932. Production of chloroprene today is completely dependent on the production of the polymer. The only other use accounting for significant volume is the synthesis of 2,3-dichloro-l,3-butadiene, which is used as a monomer in selected copolymerizations with chloroprene. [Pg.37]

Fig. 3. Heat and oil resistance of CSM compared to other elastomers by ASTM D2000. A—K iadicate grades of CSM. The other ASTM designations are as follows AM, acryhc elastomers CR, chloroprene mbber EPDM, ethylene—propjiene—diene mbber FKM, fluorocarbon elastomers FQ, fluorosiUcones ... Fig. 3. Heat and oil resistance of CSM compared to other elastomers by ASTM D2000. A—K iadicate grades of CSM. The other ASTM designations are as follows AM, acryhc elastomers CR, chloroprene mbber EPDM, ethylene—propjiene—diene mbber FKM, fluorocarbon elastomers FQ, fluorosiUcones ...
C. W. Stewart, Sr., R. L. Dawson, and P. R. Johnson, Effect of Compounding Variables on the Rate of Heat and Smoke Release from Poly chloroprene Foam, Du Pont elastomer bulletin C-NL-550.871, 1974. [Pg.552]

Polychloroprene rubber (CR) is the most popular and versatile of the elastomers used in adhesives. In the early 1920s, Dr. Nieuwland of the University of Notre Dame synthesized divinyl acetylene from acetylene using copper(l) chloride as catalyst. A few years later, Du Pont scientists joined Dr. Nieuwland s research and prepared monovinyl acetylene, from which, by controlled reaction with hydrochloric acid, the chloroprene monomer (2-chloro-l, 3-butadiene) was obtained. Upon polymerization of chloroprene a rubber-like polymer was obtained. In 1932 it was commercialized under the tradename DuPrene which was changed to Neoprene by DuPont de Nemours in 1936. [Pg.589]

Chemistry of polychloroprene rubber. Polychloroprene elastomers are produced by free-radical emulsion polymerization of the 2-chloro-1,3-butadiene monomer. The monomer is prepared by either addition of hydrogen chloride to monovinyl acetylene or by the vapour phase chlorination of butadiene at 290-300°C. This latter process was developed in 1960 and produces a mixture of 3,4-dichlorobut-l-ene and 1,4-dichlorobut-2-ene, which has to be dehydrochlorinated with alkali to produce chloroprene. [Pg.590]

This name has been widely adopted for the elastomer obtained by polymerising chloroprene, i.e., polychloroprene. It is however the trade name of those types of polychloroprene produced by the Du Pont Co.which were originally called Duprene . Chloroprene rubber (CR) is the preferred term, but polychloroprene (PCP) is also popular. [Pg.42]

Chloroprene-dichlorobutadiene copolymers, 79 843 Chloroprene elastomers, 27 767 Chloroprene peroxides, 79 829 Chloroprene (Ml) reactivity ratios, 79 832t Chloroprene rubber, 9 561-562 79 828 Chloroprene-sulfur copolymerization, 79 833-834... [Pg.179]

Poly(vinyl ethers) 1928 1936 Adhesives, plasticizers Poly(chloroprene) 1925 1932 Elastomers... [Pg.9]

Besides butadiene, another important monomer for the synthetic elastomer industry is chloroprene, which is polymerized to the chemically resistant polychloroprene. It is made by chlorination of butadiene follow by dehydrochlorination. As with most conjugated dienes, addition occurs either 1,2 or 1,4 because the intermediate allyl carbocation is delocalized. The 1,4-isomer can be isomerized to the 1,2-isomer by heating with cuprous chloride. [Pg.179]

Over 5.5 billion pounds of synthetic rubber is produced annually in the United States. The principle elastomer is the copolymer of butadiene (75%) and styrene (25) (SBR) produced at an annual rate of over 1 million tons by the emulsion polymerization of butadiene and styrene. The copolymer of butadiene and acrylonitrile (Buna-H, NBR) is also produced by the emulsion process at an annual rate of about 200 million pounds. Likewise, neoprene is produced by the emulsion polymerization of chloroprene at an annual rate of over 125,000 t. Butyl rubber is produced by the low-temperature cationic copolymerization of isobutylene (90%) and isoprene (10%) at an annual rate of about 150,000 t. Polybutadiene, polyisoprene, and EPDM are produced by the anionic polymerization of about 600,000, 100,000, and 350,000 t, respectively. Many other elastomers are also produced. [Pg.554]

Terpolymers in which the acrylate monomer is the major component are useful as ethylene-acrylate elastomers (trade name Vamac) [Hagman and Crary, 1985]. A small amount of an alkenoic acid is present to introduce sites (C=C) for subsequent crosslinking via reaction with primary diamines (Sec. 9-2d). These elastomers have excellent oil resistance and stability over a wide temperature range (—50 to 200°C). They are superior to nitrile and chloroprene rubbers. Although not superior to silicone and fluorocarbon elastomers, they are less costly uses include automotive (hydraulic system seals, hoses) and wire and cable insulation. [Pg.531]

The interpolymers obtained with different elastomers vary widely methyl methacrylate and styrene give a soluble product whereas chloroprene, acrylo-... [Pg.42]

Chloroprene is available commercially on a restricted basis in the United States as crude P-chloroprene with a minimum purity of 95% (Lewis, 1993 DuPont Dow Elastomers, 1997). The principal impurities are dichlorobutene and solvents, with smaller amounts of 1-chlorobutadiene (a-chloroprene), chlorobutenes and dimers of both chloroprene and butadiene. Due to its reactivity, chloroprene is stored at 0°C or below under nitrogen and contains significant quantities of inhibitors, such as phenothiazine, tert-butylcatechol, picric acid and the ammonium salt of A -nitroso-N-phenylhydroxy lamine, to prevent degradation and polymerization (Stewart, 1993). Generally within six weeks of manufacture, crude chloroprene is distilled to produce polymerization grade, which is used within approximately 24 h of distillation. [Pg.228]

In the production of chloroprene from butadiene, there are three essential steps liquid- or vapour-phase chlorination of butadiene to a mixture of 3,4-dichloro-l-butene and l,4-dichloro-2-butene catalytic isomerization of 1,4-dichloro-2-butene to 3,4-dichloro-l-butene and caustic dehydrochlorination of the 3,4-dichloro-l-butene to chloroprene. By-products in the first step include hydrochloric acid, 1-chloro-1,3-butadiene, trichlorobutenes and tetrachlorobutanes, butadiene dimer and higher-boiling products. In the second step, the mixture of l,4-dichloro-2-butene and 3,4-dichloro-l-butene isolated by distillation is isomerized to pure 3,4-dichloro-l-butene by heating to temperatures of 60-120°C in the presence of a catalyst. Finally, dehydrochlorination of 3,4-dichloro-l-butene with dilute sodium hydroxide in the presence of inhibitors gives crude chloroprene (Kleinschmidt, 1986 Stewart, 1993 DuPont Dow Elastomers, 1997). [Pg.229]


See other pages where Elastomers chloroprene is mentioned: [Pg.105]    [Pg.105]    [Pg.947]    [Pg.233]    [Pg.233]    [Pg.49]    [Pg.470]    [Pg.538]    [Pg.540]    [Pg.543]    [Pg.590]    [Pg.271]    [Pg.162]    [Pg.555]    [Pg.1025]    [Pg.327]    [Pg.233]    [Pg.233]    [Pg.249]    [Pg.251]    [Pg.229]   
See also in sourсe #XX -- [ Pg.2275 ]




SEARCH



Acrylonitrile-chloroprene elastomer

© 2024 chempedia.info