Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Units monomer

Surface active electrolytes produce charged micelles whose effective charge can be measured by electrophoretic mobility [117,156]. The net charge is lower than the degree of aggregation, however, since some of the counterions remain associated with the micelle, presumably as part of a Stem layer (see Section V-3) [157]. Combination of self-diffusion with electrophoretic mobility measurements indicates that a typical micelle of a univalent surfactant contains about 1(X) monomer units and carries a net charge of 50-70. Additional colloidal characterization techniques are applicable to micelles such as ultrafiltration [158]. [Pg.481]

Other properties of association colloids that have been studied include calorimetric measurements of the heat of micelle formation (about 6 kcal/mol for a nonionic species, see Ref. 188) and the effect of high pressure (which decreases the aggregation number [189], but may raise the CMC [190]). Fast relaxation methods (rapid flow mixing, pressure-jump, temperature-jump) tend to reveal two relaxation times t and f2, the interpretation of which has been subject to much disagreement—see Ref. 191. A fast process of fi - 1 msec may represent the rate of addition to or dissociation from a micelle of individual monomer units, and a slow process of ti < 100 msec may represent the rate of total dissociation of a micelle (192 see also Refs. 193-195). [Pg.483]

Reference 115 gives the diffusion coefficient of DTAB (dodecyltrimethylammo-nium bromide) as 1.07 x 10" cm /sec. Estimate the micelle radius (use the Einstein equation relating diffusion coefficient and friction factor and the Stokes equation for the friction factor of a sphere) and compare with the value given in the reference. Estimate also the number of monomer units in the micelle. Assume 25°C. [Pg.490]

Povodyrev et aJ [30] have applied crossover theory to the Flory equation ( section A2.5.4.1) for polymer solutions for various values of N, the number of monomer units in the polymer chain, obtaining the coexistence curve and values of the coefficient p jj-from the slope of that curve. Figure A2.5.27 shows their comparison between classical and crossover values of p j-j for A = 1, which is of course just the simple mixture. As seen in this figure, the crossover to classical behaviour is not complete until far below the critical temperature. [Pg.654]

Several studies have demonstrated the successful incoriDoration of [60]fullerene into polymeric stmctures by following two general concepts (i) in-chain addition, so called pearl necklace type polymers or (ii) on-chain addition pendant polymers. Pendant copolymers emerge predominantly from the controlled mono- and multiple functionalization of the fullerene core with different amine-, azide-, ethylene propylene terjDolymer, polystyrene, poly(oxyethylene) and poly(oxypropylene) precursors [63,64,65,66,62 and 66]. On the other hand, (-CggPd-) polymers of the pearl necklace type were fonned via the periodic linkage of [60]fullerene and Pd monomer units after their initial reaction with thep-xy y ene diradical [69,70 and 71]. [Pg.2416]

Figure C2.1.1. (a) Constitutional isomerism of poly (propylene). The upper chain has a regular constitution. The lower one contains a constitutional defect, (b) Configurational isomerism of poly(propylene). Depending on tire relative configurations of tire asymmetric carbons of two successive monomer units, tire corresponding dyad is eitlier meso or racemo. Figure C2.1.1. (a) Constitutional isomerism of poly (propylene). The upper chain has a regular constitution. The lower one contains a constitutional defect, (b) Configurational isomerism of poly(propylene). Depending on tire relative configurations of tire asymmetric carbons of two successive monomer units, tire corresponding dyad is eitlier meso or racemo.
It is not possible to apply (C2.1.1) down to the level of monomers and replace by the degree of polymerization N and f by the sum of the squares of the bond lengths in the monomer because the chemical constitution imposes some stiffness to the chain on the length scale of a few monomer units. This effect is accounted for by introducing the characteristic ratio defined as C- — The characteristic ratio can be detennined... [Pg.2517]

Since PY ) x V, we have x V It is important to note that Xj should be independent of the length of the Rouse unit given by <3j. Since rj is proportional to the number of monomer units between two beads, should scale... [Pg.2528]

In amoriDhous poiymers, tiiis reiation is vaiid for processes tiiat extend over very different iengtii scaies. Modes which invoived a few monomer units as weii as tenninai reiaxation processes, in which tire chains move as a whoie, obey tire superjDosition reiaxation. On tire basis of tiiis finding an empiricai expression for tire temperature dependence of viscosity at a zero shear rate and tiiat of tire mean reiaxation time of a. modes were derived ... [Pg.2532]

Most biological catalysts are enzymes, i.e., proteins, which are macromolecules (polypeptides) fonned by biopolymerization of amino acids (with elimination of water) some enzymes are huge, with hundreds of monomer units. The 20 amino acid monomers occurring in nature. [Pg.2697]

The protected nucleoside-3-phosphoramidite monomer units such as 671 are used in the solid-phase oligonucleotide synthesis. In the 60mer synthesis, 104 allylic protective groups are removed in almost 100% overall yield by the single Pd-catalyze reaction with formic acid and BuNH2[432], N,(9-protection of uridine derivatives was carried out under pha.se-transfer conditions[433]. [Pg.382]

Oligomer (Section 14 15) A molecule composed of too few monomer units for it to be classified as a polymer but more than in a dimer trimer tetramer etc Oligonucleotide (Section 28 6) A polynucleotide containing a relatively small number of bases Oligosaccharide (Section 25 1) A carbohydrate that gives three to ten monosacchandes on hydrolysis Optical activity (Section 7 4) Ability of a substance to rotate the plane of polanzed light To be optically active a sub stance must be chiral and one enantiomer must be present in excess of the other... [Pg.1290]

Copolymerization. Copolymerization occurs when a mixture of two or more monomer types polymerizes so that each kind of monomer enters the polymer chain. The fundamental structure resulting from copolymerization depends on the nature of the monomers and the relative rates of monomer reactions with the growing polymer chain. A tendency toward alternation of monomer units is common. [Pg.1007]

The addition polymerization of a vinyl monomer CH2=CHX involves three distinctly different steps. First, the reactive center must be initiated by a suitable reaction to produce a free radical or an anion or cation reaction site. Next, this reactive entity adds consecutive monomer units to propagate the polymer chain. Finally, the active site is capped off, terminating the polymer formation. If one assumes that the polymer produced is truly a high molecular weight substance, the lack of uniformity at the two ends of the chain—arising in one case from the initiation, and in the other from the termination-can be neglected. Accordingly, the overall reaction can be written... [Pg.14]

Figure 9.46 Rotational structure of the Ojj bands in the fluorescence excitation spectra of s-tetrazine dimers at about 552 run. Bottom Ojj band of planar dimer. Middle Ojj band of T-shaped dimer with transition in monomer unit in stem of T. Top Ojj band of T-shaped dimer with transition in monomer unit in top of T. (Reproduced, with permission, from Haynam, C. A., Brumbaugh, D. V and Levy, D. H., J. Chem. Phys., 79, f58f, f983)... Figure 9.46 Rotational structure of the Ojj bands in the fluorescence excitation spectra of s-tetrazine dimers at about 552 run. Bottom Ojj band of planar dimer. Middle Ojj band of T-shaped dimer with transition in monomer unit in stem of T. Top Ojj band of T-shaped dimer with transition in monomer unit in top of T. (Reproduced, with permission, from Haynam, C. A., Brumbaugh, D. V and Levy, D. H., J. Chem. Phys., 79, f58f, f983)...
Fig. 7. Chromatograms of size-exclusion separation of IgM (mol wt = 800,000) from albumin (69,000) where A—D correspond to IgM aggregates, IgM, monomer units, and albumin, respectively, using (a) FPLC Superose 6 in a 1 x 30 — cm long column, and (b) Sepharose CL-6B in a 37-cm column. Fig. 7. Chromatograms of size-exclusion separation of IgM (mol wt = 800,000) from albumin (69,000) where A—D correspond to IgM aggregates, IgM, monomer units, and albumin, respectively, using (a) FPLC Superose 6 in a 1 x 30 — cm long column, and (b) Sepharose CL-6B in a 37-cm column.
Copolymer composition can be predicted for copolymerizations with two or more components, such as those employing acrylonitrile plus a neutral monomer and an ionic dye receptor. These equations are derived by assuming that the component reactions involve only the terminal monomer unit of the chain radical. The theory of multicomponent polymerization kinetics has been treated (35,36). [Pg.279]

The main raw material required for the production of viscose is ceUulose (qv), a natural polymer of D-glucose (Fig. 1). The repeating monomer unit is a pair of anhydroglucose units (AGU). CeUulose and starch (qv) are identical but for the way in which the ring oxygen atoms alternate from side to side of the polymer chain (beta linkages) in ceUulose, but remain on the same side (alpha linkages) in starch. [Pg.345]

Poly(vinyl fluoride) [24981-14-4] (PVF) is a semicrystaltiae polymer with a planar, zig-zag configuration (50). The degree of crystallinity can vary significantly from 20—60% (51) and is thought to be primarily a function of defect stmctures. Wide-line nmr and x-ray diffraction studies show the unit cell to contain two monomer units and have the dimensions of a = 0.857 nm, b = 0.495 nm, and c = 0.252 nm (52). Similarity to the phase I crystal form of poly (vinytidene fluoride) suggests an orthorhombic crystal (53). [Pg.379]

Any of the four monomer residues can be arranged in a polymer chain in either head-to-head, head-to-tail, or tail-to-tail configurations. Each of the two head-to-tail vinyl forms can exist as syndiotactic or isotactic stmctures because of the presence of an asymmetric carbon atom (marked with an asterisk) in the monomer unit. Of course, the random mix of syndiotactic and isotactic, ie, atactic stmctures also exists. Of these possible stmctures, only... [Pg.466]

The physical properties of any polyisoprene depend not only on the microstmctural features but also on macro features such as molecular weight, crystallinity, linearity or branching of the polymer chains, and degree of cross-linking. For a polymer to be capable of crystallization, it must have long sequences where the stmcture is completely stereoregular. These stereoregular sequences must be linear stmctures composed exclusively of 1,4-, 1,2-, or 3,4-isoprene units. If the units are 1,4- then they must be either all cis or all trans. If 1,2- or 3,4- units are involved, they must be either syndiotactic or isotactic. In all cases, the monomer units must be linked in the head-to-tail manner (85). [Pg.467]

Chain Length. The total number of monomer units (which approximately equals x - - y - - z. in the above formula) in PE chains is called the degree of polymerization. It can vary from small (about 10—20 in PE waxes) to very large (over 100,000 for PE of ultrahigh molecular weight (UHMW)). Consequentiy, the molecular weights of PE resins can range from several hundred to several million. [Pg.367]

The degree of polymerization is controlled by the rate of addition of the initiator. Reaction in the presence of an initiator proceeds in two steps. First, the rate-determining decomposition of initiator to free radicals. Secondly, the addition of a monomer unit to form a chain radical, the propagation step (Fig. 2) (9). Such regeneration of the radical is characteristic of chain reactions. Some of the mote common initiators and their half-life values are Hsted in Table 3 (10). [Pg.375]

Crystallinity of polypropylene is usually determined by x-ray diffraction (21). Isotactic polymer consists of heHcal molecules, with three monomer units pet chain unit, resulting in a spacing between units of identical conformation of 0.65 nm (Fig. 2a). These molecules interact with others, or different... [Pg.407]

Syndiotactic polypropylene also forms hehcal molecules however, each chain unit consists of four monomer units having a spacing of 0.74 nm. The unit cell is orthorhombic and contains 48 monomer units having a crystaHographic density of 0.91 g/cm (27). [Pg.408]

Thermal, Thermooxidative, and Photooxidative Degradation. Polymers of a-olefins have at least one tertiary C-H bond in each monomer unit of polymer chains. As a result, these polymers are susceptible to both thermal and thermooxidative degradation. Reactivity in degradation reactions is especially significant in the case of polyolefins with branched alkyl side groups. For example, thermal decomposition of... [Pg.426]

Propylene oxide and other epoxides polymerize by ring opening to form polyether stmctures. Either the methine, CH—O, or the methylene, CH2—O, bonds ate broken in this reaction. If the epoxide is unsymmetrical (as is PO) then three regioisomers are possible head-to-tad (H—T), head-to-head (H—H), and tad-to-tad (T—T) dyads, ie, two monomer units shown as a sequence. The anionic and... [Pg.349]


See other pages where Units monomer is mentioned: [Pg.481]    [Pg.540]    [Pg.2189]    [Pg.2531]    [Pg.2629]    [Pg.2831]    [Pg.10]    [Pg.398]    [Pg.246]    [Pg.431]    [Pg.197]    [Pg.326]    [Pg.387]    [Pg.479]    [Pg.144]    [Pg.247]    [Pg.295]    [Pg.408]    [Pg.411]    [Pg.337]    [Pg.349]    [Pg.354]    [Pg.361]    [Pg.364]   
See also in sourсe #XX -- [ Pg.50 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.429 ]

See also in sourсe #XX -- [ Pg.6 , Pg.164 ]

See also in sourсe #XX -- [ Pg.50 ]

See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.432 ]

See also in sourсe #XX -- [ Pg.23 , Pg.25 , Pg.62 , Pg.64 , Pg.69 , Pg.87 , Pg.88 , Pg.93 ]




SEARCH



Angle dependence, between monomer units

Aromatic structures monomer unit

Arrangement of Monomer Units

Distribution monomer unit, simulation using

Glucose monomer units

Linear polymers monomer units

Material properties monomers units

Monomer unit distribution, simulation

Monomer unit, chemical geometric

Monomer unit, defined

Monomer units defining

Monomer units, assembly

Monomer units, different arrangements

Monomer units, in polymers

Monomers unit configuration

Number of monomer units

Orientation of monomer units

Polymer chemistry monomer units

Polymers monomer units

Polyolefins monomer units

Sequencing of Monomer Unit in Polymers

Structural Arrangement of Monomer Units

Styrene acrylonitrile monomer units

Terminal monomer unit

© 2024 chempedia.info