Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers anionic surfactants

Goddard, E. and R. Hannan (1976). Cationic polymer/anionic surfactant interactions. Journal of Colloid and Interface Science 55(1) 73-79. [Pg.679]

Jiang, W. and S. Han (2000). Viscosity of nonionic polymer/anionic surfactant complexes in water. Journal of Colloid and Interface Science 229(1) 1-5. [Pg.679]

Anionic polymers Anionic starches Anionic surfactants... [Pg.57]

Many different types of foaming agents are used, but nonionic surfactants are the most common, eg, ethoxylated fatty alcohols, fatty acid alkanolamides, fatty amine oxides, nonylphenol ethoxylates, and octylphenol ethoxylates, to name a few (see Alkylphenols). Anionic surfactants can be used, but with caution, due to potential complexing with cationic polymers commonly used in mousses. [Pg.453]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

Surfactants evaluated in surfactant-enhanced alkaline flooding include internal olefin sulfonates (259,261), linear alkyl xylene sulfonates (262), petroleum sulfonates (262), alcohol ethoxysulfates (258,261,263), and alcohol ethoxylates/anionic surfactants (257). Water-thickening polymers, either xanthan or polyacrylamide, can reduce injected fluid mobiHty in alkaline flooding (264) and surfactant-enhanced alkaline flooding (259,263). The combined use of alkah, surfactant, and water-thickening polymer has been termed the alkaH—surfactant—polymer (ASP) process. Cross-linked polymers have been used to increase volumetric sweep efficiency of surfactant—polymer—alkaline agent formulations (265). [Pg.194]

Poly(methyl vinyl ether) [34465-52-6] because of its water solubility, continues to generate commercial interest. It is soluble in all proportions and exhibits a well-defined cloud point of 33°C. Like other polybases, ie, polymers capable of accepting acidic protons, such as poly(ethylene oxide) and poly(vinyl pyrroHdone), each monomer unit can accept a proton in the presence of large anions, such as anionic surfactants, Hl, or polyacids, to form a wide variety of complexes. [Pg.517]

Anionic Surfactants. PVP also interacts with anionic detergents, another class of large anions (108). This interaction has generated considerable interest because addition of PVP results in the formation of micelles at lower concentration than the critical micelle concentration (CMC) of the free surfactant the mechanism is described as a "necklace" of hemimicelles along the polymer chain, the hemimicelles being surrounded to some extent with PVP (109). The effective lowering of the CMC increases the surfactant s apparent activity at interfaces. PVP will increase foaming of anionic surfactants for this reason. [Pg.532]

Naphthalenedisulfonate-acetonitrile as the only mobile phase with a silica column coated with a crosslinked aminofluorocarbon polymer has proven to be an effective combination for the separation of aliphatic anionic surfactants. Indirect conductivity and photometric detection modes are used to monitor these analytes. The retention of these surfactants is found to depend on both the ionic strength and the organic solvent content of the mobile phase. The mechanism of retention is considered to be a combination of both reverse phase and ion exchange processes. Selective separation of both alkanesulfonates and... [Pg.168]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

Emulsions and Emulsion Technology (in three parts), edited by Kenneth J. Lissant Anionic Surfactants (in two parts), edited by Warner M. Linfieid see Volume 56) Anionic Surfactants Chemical Analysis, edited by John Cross Stabilization of Colloidal Dispersions by Polymer Adsorption, Tatsuo Sato and Richard Ruch... [Pg.4]

CE has been used for the analysis of anionic surfactants [946,947] and can be considered as complementary to HPLC for the analysis of cationic surfactants with advantages of minimal solvent consumption, higher efficiency, easy cleaning and inexpensive replacement of columns and the ability of fast method development by changing the electrolyte composition. Also the separation of polystyrene sulfonates with polymeric additives by CE has been reported [948]. Moreover, CE has also been used for the analysis of polymeric water treatment additives, such as acrylic acid copolymer flocculants, phosphonates, low-MW acids and inorganic anions. The technique provides for analyst time-savings and has lower detection limits and improved quantification for determination of anionic polymers, compared to HPLC. [Pg.278]

Linssen and de Vries [285] have examined 1 % di-f-butyl-p-cresol (DBPC) in low-MW poly(tetrahydro-furan) by means of DOSY (Figure 5.13). DOSY is a powerful tool for the analysis of polydisperse samples and complex mixtures, such as anionic surfactants. It is not to be expected that DOSY will rapidly become a standard tool in polymer/additive analysis. [Pg.340]

From the characteristics of the methods, it would appear that FD-MS can profitably be applied to poly-mer/additive dissolutions (without precipitation of the polymer or separation of the additive components). The FD approach was considered to be too difficult and fraught with inherent complications to be of routine use in the characterisation of anionic surfactants. The technique does, however, have a niche application in the area of nonpolar compound classes such as hydrocarbons and lubricants, compounds which are difficult to study using other mass-spectrometry ionisation techniques. [Pg.376]

Surfactants used as lubricants are added to polymer resins to improve the flow characteristics of the plastic during processing they also stabilise the cells of polyurethane foams during the foaming process. Surfactants are either nonionic (e.g. fatty amides and alcohols), cationic, anionic (dominating class e.g. alkylbenzene sulfonates), zwitterionic, hetero-element or polymeric (e.g. EO-PO block copolymers). Fluorinated anionic surfactants or super surfactants enable a variety of surfaces normally regarded as difficult to wet. These include PE and PP any product required to wet the surface of these polymers will benefit from inclusion of fluorosurfactants. Surfactants are frequently multicomponent formulations, based on petro- or oleochemicals. [Pg.785]

Both nonionic and anionic surfactants have been evaluated in this application (488,489) including internal olefin sulfonates (487, 490), linear alkylxylene sulfonates (490), petroleum sulfonates (491), alcohol ethoxysulfates (487,489,492). Ethoxylated alcohols have been added to some anionic surfactant formulations to improve interfacial properties (486). The use of water thickening polymers, either xanthan or polyacrylamide to reduce injected fluid mobility mobility has been proposed for both alkaline flooding (493) and surfactant enhanced alkaline flooding (492). Crosslinked polymers have been used to increase volumetric sweep efficiency of surfactant - polymer - alkaline agent formulations (493). [Pg.44]

Shimomura and Kunitake have reported that stable monolayers and LB films were obtained by electrostatic interaction of water soluble anionic polymers with cationic amphiphiles [58]. This polyion-complexation was also a useful method for stabilization of monolayers of unstable [59] or water soluble anionic surfactants [60]. Mixtures of water soluble cationic and anionic surfactants (1 1) also formed stable Langmuir monolayers at the air/ water interface [60]. [Pg.216]

DuPont is an active player in OLED technology. Polymers used in devices as emitting materials are poly(p-phenylenevinylene), poly(arylenevinylene)s, poly(p-phenylene), poly(arylene)s, polyquinolines, and polyfluorenes. In some cases, an anionic surfactant such as lithium nonylphenoxy ether sulfate was added to the above-mentioned polymeric emitters... [Pg.652]

Do not use cationic polymers for products containing anionic surfactants, strong oxidizing agents, or electrolytes. [Pg.257]

In polymer applications derivatives of oils and fats, such as epoxides, polyols and dimerizations products based on unsaturated fatty acids, are used as plastic additives or components for composites or polymers like polyamides and polyurethanes. In the lubricant sector oleochemically-based fatty acid esters have proved to be powerful alternatives to conventional mineral oil products. For home and personal care applications a wide range of products, such as surfactants, emulsifiers, emollients and waxes, based on vegetable oil derivatives has provided extraordinary performance benefits to the end-customer. Selected products, such as the anionic surfactant fatty alcohol sulfate have been investigated thoroughly with regard to their environmental impact compared with petrochemical based products by life-cycle analysis. Other product examples include carbohydrate-based surfactants as well as oleochemical based emulsifiers, waxes and emollients. [Pg.75]

Surface tension measurements indicated no bulk interaction between the anionic surfactant and the anionic or nonionic polymer. [Pg.309]

The adsorption of an anionic surfactant on a positively charged oxide surface is significantly reduced by the presence of a pre-adsorbed anionic polymer. [Pg.309]

Coatings emulsions are generally formed by addition polymerization of common, highly available monomers, using free radical initiators to create polymers having molecular weights from a few thousand up to millions. The polymerization is most often stabilized by non-ionic and/or anionic surfactants, which emulsify the insoluble monomer droplets, and then stabilize the resulting particles, usually in the shape of a sphere. In addition to surfactants, emulsions are sometimes stabilized with water-soluble poly-... [Pg.117]


See other pages where Polymers anionic surfactants is mentioned: [Pg.200]    [Pg.364]    [Pg.200]    [Pg.364]    [Pg.2602]    [Pg.317]    [Pg.383]    [Pg.344]    [Pg.609]    [Pg.610]    [Pg.31]    [Pg.153]    [Pg.15]    [Pg.346]    [Pg.211]    [Pg.180]    [Pg.224]    [Pg.563]    [Pg.55]    [Pg.121]    [Pg.5]    [Pg.44]    [Pg.370]    [Pg.226]    [Pg.292]    [Pg.296]    [Pg.300]    [Pg.364]    [Pg.219]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Anionic surfactants

Polymer anionic

Polymer surfactant

© 2024 chempedia.info