Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers acetylenic

Login RB, Barabas ES. Personal care application polymers (acetylene-derived). In Salamone JC, ed. The Polymeric Materials Encyclopedia, Vol 7. Boca Raton, PL CRC Press, 1996 4950-4965. [Pg.285]

This volume continues in the tradition of Volume I in presenting detailed laboratory instructions for the preparation of various types of polymers such as urea, melamine, benzoguanamine/aldehyde resins (amino resins-amino-plasts), phenol/aldehyde condensates, epoxy resins, silicone resins, alkyd resins, polyacetyls/polyvinyl acetals, polyvinyl ethers, polyvinyl pyrroli-dones, polyacrylic acids, and polyvinyl chloride. Polyvinyl acetate and related vinyl esters, allyl polymers, acetylene polymers, maleate and fumarate polymers, and several other addition-condensation polymer types will be covered at a later date in Volume III. [Pg.431]

AH the common monobasic (107) and dibasic esters (108) of tetrahydrofurfuryl alcohol have been prepared by conventional techniques the dibasic esters and some of the mono esters are effective as primary or secondary plasticizers for vinyl polymers. Tetrahydrofurfuryl acrylate [2399-48-6] and methacrjiate [2455-24-5] specialty monomers, have been produced by carbonylation (nickel carbonyl and acetylene) of the alcohol (109) as weU as by direct esterification (110—112) and ester interchange (111). [Pg.82]

Liquid- and vapor-phase processes have been described the latter appear to be advantageous. Supported cadmium, zinc, or mercury salts are used as catalysts. In 1963 it was estimated that 85% of U.S. vinyl acetate capacity was based on acetylene, but it has been completely replaced since about 1982 by newer technology using oxidative addition of acetic acid to ethylene (2) (see Vinyl polymers). In western Europe production of vinyl acetate from acetylene stiU remains a significant commercial route. [Pg.102]

Once the principal route to vinyl chloride, in all but a few percent of current U.S. capacity this has been replaced by dehydrochlorination of ethylene dichloride. A combined process in which hydrogen chloride cracked from ethylene dichloride was added to acetylene was advantageous but it is rarely used because processes to oxidize hydrogen chloride to chlorine with air or oxygen are cheaper (7) (see Vinyl polymers). [Pg.102]

Heating butanediol with acetylene in the presence of an acidic mercuric salt gives the cycHc acetal expected from butanediol and acetaldehyde (128). A commercially important reaction is with diisocyanates to form polyurethanes (129) (see Urethane POLYMERS). [Pg.108]

Poly(l,3,4-oxadia2ole-2,5-diyl-vinylene) and poly(l,3,4-oxadia2ole-2,5-diyl-ethynylene) were synthesi2ed by polycondensation of fumaramide or acetylene-dicarboxamide with hydra2ine sulfate in PPA to study the effect of the two repeating units on polymer electronic and thermal properties (55). [Pg.534]

Vinylation. Acetylene adds weak acids across the triple bond to give a wide variety of vinyl derivatives. Alcohols or phenols give vinyl ethers and carboxyHc acids yield vinyl esters (see Vinyl polymers). [Pg.374]

Cuprous salts catalyze the oligomerization of acetylene to vinylacetylene and divinylacetylene (38). The former compound is the raw material for the production of chloroprene monomer and polymers derived from it. Nickel catalysts with the appropriate ligands smoothly convert acetylene to benzene (39) or 1,3,5,7-cyclooctatetraene (40—42). Polymer formation accompanies these transition-metal catalyzed syntheses. [Pg.374]

The gases leaving the purification system are scmbbed with water to recover solvent and a continuous small purge of solvent gets rid of polymers. The acetylene purity resulting from this system is 99%. The main impurities in the acetylene are carbon dioxide, propadiene, and a very small amount of... [Pg.390]

The principal chemical markets for acetylene at present are its uses in the preparation of vinyl chloride, vinyl acetate, and 1,4-butanediol. Polymers from these monomers reach the consumer in the form of surface coatings (paints, films, sheets, or textiles), containers, pipe, electrical wire insulation, adhesives, and many other products which total biUions of kg. The acetylene routes to these monomers were once dominant but have been largely displaced by newer processes based on olefinic starting materials. [Pg.393]

Vinyl acetate (ethenyl acetate) is produced in the vapor-phase reaction at 180—200°C of acetylene and acetic acid over a cadmium, 2inc, or mercury acetate catalyst. However, the palladium-cataly2ed reaction of ethylene and acetic acid has displaced most of the commercial acetylene-based units (see Acetylene-DERIVED chemicals Vinyl polymers). Current production is dependent on the use of low cost by-product acetylene from ethylene plants or from low cost hydrocarbon feeds. [Pg.393]

Acetylene is condensed with carbonyl compounds to give a wide variety of products, some of which are the substrates for the preparation of families of derivatives. The most commercially significant reaction is the condensation of acetylene with formaldehyde. The reaction does not proceed well with base catalysis which works well with other carbonyl compounds and it was discovered by Reppe (33) that acetylene under pressure (304 kPa (3 atm), or above) reacts smoothly with formaldehyde at 100°C in the presence of a copper acetyUde complex catalyst. The reaction can be controlled to give either propargyl alcohol or butynediol (see Acetylene-DERIVED chemicals). 2-Butyne-l,4-diol, its hydroxyethyl ethers, and propargyl alcohol are used as corrosion inhibitors. 2,3-Dibromo-2-butene-l,4-diol is used as a flame retardant in polyurethane and other polymer systems (see Bromine compounds Elame retardants). [Pg.393]

Table 3 provides typical specifications for isoprene that are suitable for Al—Ti polymerization (89). Traditional purification techniques including superfractionation and extractive distillation are used to provide an isoprene that is practically free of catalyst poisons. Acetylenes and 1,3-cyclopentadiene are the most difficult to remove, and distillation can be supplemented with chemical removal or partial hydrogenation. Generally speaking distillation is the preferred approach. Purity is not the main consideration because high quaUty polymer can be produced from monomer with relatively high levels of olefins and / -pentane. On the other hand, there must be less than 1 ppm of 1,3-cyclopentadiene. [Pg.467]

Other polymers ia this category iaclude CJ-conjugated polygermylenes (20) and TT-conjugated poly acetylene, polythiophene, and poly(p-phenylenevinylene). The photoconductivity of many TT-conjugated polymers can be enhanced by dopiag with fuUerenes (21). [Pg.409]

Vinyl-2-PyrroHdinone. l-Vinyl-2-pyrroHdinone (VP) (l-ethenyl-2-pyrroHdinone, A/-vinyl-2-pyrroHdone, and V-Pyrol) is manufactured by ISP in the United States and by BASF in Germany by vinylation of 2-pyrroHdinone with acetylene. It forms the basis for a significant specialty polymer and copolymer industry and consumes the primary portion of aH 2-pyrroHdinone manufactured (see Vinyl polymers, n-vinyl monomers and polymers). [Pg.363]

Common conductive polymers are poly acetylene, polyphenylene, poly-(phenylene sulfide), polypyrrole, and polyvinylcarba2ole (123) (see Electrically conductive polymers). A static-dissipative polymer based on a polyether copolymer has been aimounced (124). In general, electroconductive polymers have proven to be expensive and difficult to process. In most cases they are blended with another polymer to improve the processibiUty. Conductive polymers have met with limited commercial success. [Pg.296]

Polyacetylenes. The first report of the synthesis of a strong, flexible, free-standing film of the simplest conjugated polymer, polyacetylene [26571-64-2] (CH), was made in 1974 (16). The process, known as the Shirakawa technique, involves polymerization of acetylene on a thin-film coating of a heterogeneous Ziegler-Natta initiator system in a glass reactor, as shown in equation 1. [Pg.35]

Much effort has been expended toward the improvement of the properties of polyacetylenes made by the direct polymerization of acetylene. Variation of the type of initiator systems (17—19), annealing or aging of the catalyst (20,21), and stretch orientation of the films (22,23) has resulted in increases in conductivity and improvement in the oxidative stabiHty of the material. The improvement in properties is likely the result of a polymer with fewer defects. [Pg.35]

Even with improvement in properties of polyacetylenes prepared from acetylene, the materials remained intractable. To avoid this problem, soluble precursor polymer methods for the production of polyacetylene have been developed. The most highly studied system utilizing this method, the Durham technique, is shown in equation 2. [Pg.35]

Copolymerizations of benzvalene with norhornene have been used to prepare block copolymers that are more stable and more soluble than the polybenzvalene (32). Upon conversion to (CH), some phase separation of nonconverted polynorhornene occurs. Other copolymerizations of acetylene with a variety of monomers and carrier polymers have been employed in the preparation of soluble polyacetylenes. Direct copolymeriza tion of acetylene with other monomers (33—39), and various techniques for grafting polyacetylene side chains onto solubilized carrier polymers (40—43), have been studied. In most cases, the resulting copolymers exhibit poorer electrical properties as solubiUty increases. [Pg.36]


See other pages where Polymers acetylenic is mentioned: [Pg.415]    [Pg.104]    [Pg.607]    [Pg.1125]    [Pg.235]    [Pg.96]    [Pg.415]    [Pg.104]    [Pg.607]    [Pg.1125]    [Pg.235]    [Pg.96]    [Pg.227]    [Pg.18]    [Pg.239]    [Pg.241]    [Pg.242]    [Pg.121]    [Pg.180]    [Pg.233]    [Pg.536]    [Pg.380]    [Pg.380]    [Pg.391]    [Pg.393]    [Pg.517]    [Pg.407]    [Pg.403]    [Pg.423]    [Pg.75]    [Pg.70]    [Pg.367]    [Pg.102]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



© 2024 chempedia.info