Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermosets amino resins

Thermosetting amino resins produced from urea are built up by condensation polymerization. Urea is reacted with formaldehyde, which results in the formation of addition products such as methylol compounds. Further reaction and the concurrent elimination of water leads to the formation of low-molecular-weight condensates, which are stUl soluble. Higher-molecular-weight products, which are insoluble and infusible, are obtained by further condensing the low-molecular-weight condensates. [Pg.600]

The commonly used resins in the manufacture of decorative and industrial laminates ate thermosetting materials. Thermosets ate polymers that form cross-linked networks during processing. These three-dimensional molecules ate of essentially infinite size. Theoretically, the entire cured piece could be one giant molecule. The types of thermosets commonly used in laminates ate phenoHcs, amino resins (melamines), polyesters, and epoxies. [Pg.531]

Amino resins are thermosetting polymers made by combining an aldehyde with a compound containing an amino (—NH2) group. Urea—formaldehyde (U/F) accounts for over 80% of amino resins melamine—formaldehyde accounts for most of the rest. Other aldehydes and other amino compounds are used to a very minor extent. The first commercially important amino resin appeared about 1930, or some 20 years after the introduction of phenol—formaldehyde resins and plastics (see Phenolic resins). [Pg.321]

The term amino resin is usually appHed to the broad class of materials regardless of appHcation, whereas the term aminoplast or sometimes amino plastic is more commonly appHed to thermosetting molding compounds based on amino resins. Amino plastics and resins have been in use since the 1920s. Compared to other segments of the plastics industry, they are mature products, and their growth rate is only about half of that of the plastics industry as a whole. They account for about 3% of the United States plastics and resins production. [Pg.321]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Amino Resins. Amino resins (qv) include both urea- and melamine—formaldehyde condensation products. They are thermosets prepared similarly by the reaction of the amino groups in urea [57-13-6] or melamine [108-78-1] with formaldehyde to form the corresponding methylol derivatives, which are soluble in water or ethanol. To form plywood, particle board, and other wood products for adhesive or bonding purposes, a Hquid resin is mixed with some acid catalyst and sprayed on the boards or granules, then cured and cross-linked under heat and pressure. [Pg.328]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

Commonly accepted practice restricts the term to plastics that serve engineering purposes and can be processed and reprocessed by injection and extmsion methods. This excludes the so-called specialty plastics, eg, fluorocarbon polymers and infusible film products such as Kapton and Updex polyimide film, and thermosets including phenoHcs, epoxies, urea—formaldehydes, and sdicones, some of which have been termed engineering plastics by other authors (4) (see Elastol rs, synthetic-fluorocarbon elastol rs Eluorine compounds, organic-tdtrafluoroethylenecopolyt rs with ethylene Phenolic resins Epoxy resins Amino resins and plastics). [Pg.261]

Of the various amino-resins that have been prepared, the urea-formaldehyde (U-F) resins are by far the most important commercially. Like the phenolic resins, they are, in the finished product, cross-linked (thermoset) insoluble, infusible materials. For application, a low molecular weight product or resin is first produced and this is then cross-linked only at the end of the fabrication process. [Pg.669]

Amino resins are condensation thermosetting polymers of formaldehyde with either urea or melamine. Melamine is a condensation product of three urea molecules. It is also prepared from cyanamide at high pressures and temperatures ... [Pg.348]

Thermoset Plastics Alkyd, amino resin, thermosetting acrylic resin, casein, epoxy, phenolic, polyester, polyamide, silicone. [Pg.602]

Amino resins are those polymers prepared by reaction of either urea or melamine with formaldehyde. In both cases the product that results from the reaction has a well crosslinked network structure, and hence is a thermoset polymer. The structures of the two parent amino compounds are shown in Figure 1.1. [Pg.14]

Urea-formaldehyde resins are the most prominent examples of the thermosetting resins usually referred to as amino resins, comprising ca. 80% of the amino resins produced worldwide. Melamine-formaldehyde resins constitute most of the remainder of this class of resins, with other minor amounts of resins being produced from the other aldehydes or amino compounds (especially aniline), or both. [Pg.759]

UREA-FORMALDEHYDE RESIN. An important class of amino resin. Urea and formaldehyde are united in a two-stage process in the presence of pyridine, ammonia, or certain alcohols with heat and control of pH to form intermediates (methylolurea, dimenthylolurea) that are mixed with fillers to produce molding powders. These are converted to thermosetting resins by further controlled heating and pressure in the presence of catalysts. These were first plastics that could be made in white, pastel, and colored products. See also Amino Acids Melamine. [Pg.1653]

The principal feature that distinguishes thermosets and conventional elastomers from thermoplastics is the presence of a cross-linked network structure. As we have seen from the above discussion, in the case of elastomers the network structure may be formed by a limited number of covalent bonds (cross-linked rubbers) or may be due to physical links resulting in a domain structure (thermoplastic elastomers). For elastomers, the presence of these cross-links prevents gross mobility of molecules, but local molecular mobility is still possible. Thermosets, on the other hand, have a network structure formed exclusively by covalent bonds. Thermosets have a high density of cross-links and are consequently infusible, insoluble, thermally stable, and dimensionally stable under load. The major commercial thermosets include epoxies, polyesters, and polymers based on formaldehyde. Formaldehyde-based resins, which are the most widely used thermosets, consist essentially of two classes of thermosets. These are the condensation products of formaldehyde with phenol (or resorcinol) (phenoplasts or phenolic resins) or with urea or melamine (aminoplastics or amino resins). [Pg.462]

The crosslinking reaction, which occurs in the production of thermosets, also provides good adhesion to other materials. Therefore, epoxy and polyester resin matrices are used for fibre-reinforced composites, amino resins are used for bonding chipboard, while phenolics are used for bonding fibres in brake pads, and sand for metal casting. These specialised products do not fit in well with the discussion of thermoplastic properties in this... [Pg.23]


See other pages where Thermosets amino resins is mentioned: [Pg.321]    [Pg.321]    [Pg.628]    [Pg.456]    [Pg.321]    [Pg.321]    [Pg.628]    [Pg.456]    [Pg.20]    [Pg.144]    [Pg.404]    [Pg.321]    [Pg.368]    [Pg.74]    [Pg.144]    [Pg.404]    [Pg.419]    [Pg.449]    [Pg.80]    [Pg.1610]    [Pg.302]    [Pg.63]    [Pg.1233]    [Pg.1306]    [Pg.27]    [Pg.25]    [Pg.321]    [Pg.70]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



Amino resins

Resin thermoset

Thermosets aminos

Thermosetting resins

© 2024 chempedia.info