Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercuric acid

Certain mercurated acids have been tested with regard to their stability towards ammonium sulphide, with the following results o-Chloromercuri benzoic metliyi ester is only decomposed on prolonged vanning, but a sulphide may be obtained by the action of methyl alcoholic hydrogen sulphide. [Pg.162]

Acid amides have weakly amphoteric properties, and thus give salts such as CjHsCONHj.HCl with strong acids, and salts of the type C HsCONHNa with strong bases. These compounds have to be prepared at low temperatures to avoid hydrolysis, and are difficult to isolate. The mercury derivatives can, however, usually be readily prepared, because mercuric oxide is too feebly basic to cause hydrolysis of the amide, and the heavy mercuric derivatives crystallise well. [Pg.120]

Mercuric chloride test. Add mercuric chloride solution to formic acid or a solution of formate and w arm. A white precipitate of mercurous chloride, insoluble in dil. HCl, is produced. Sometimes the reduction proceeds as far as metallic mercury, which appears as a grey precipitate. [Pg.350]

Salts of many organic acids give precipitates with mercuric chloride solution. hut these are in uallv soluble in dfl. HCl. [Pg.350]

Upon distilling the mercury compound with concentrated hydrochloric acid, it is readily decomposed into mercuric chloride and pure thiophene. [Pg.173]

Method 2 (Martin, 1942). A mixture of 200 g. of zinc wool, 15 g. of mercuric chloride, 10 ml. of concentrated h3 drochloric acid and 250 ml. of water is stirred or shaken for 5 minutes. The aqueous solution is decanted, and the amalgamated zinc is covered with 150 ml. of water and 200 ml. of concentrated hydrochloric acid. The material to be reduced, usually about 0-3-0-4 mole, is then added immediately, and the reaction is commenced. [Pg.199]

Much of the acetaldehyde of commerce is obtained by the hydration of acetylene in hot dilute sulphuric acid solution in the presence of mercuric sulphate as catalyst ... [Pg.319]

Primary aromatic amides are crystaUine sohds with definite melting points. Upon boiling with 10-20 per cent, sodium or potassium hydroxide solution, they are hydrolysed with the evolution of ammonia (vapour turns red htmus paper blue and mercurous nitrate paper black) and the formation of the alkah metal salt of the acid ... [Pg.798]

Benzene and some of its derivatives react with solutions of mercuric nitrate in concentrated nitric acid to give nitrophenols. These reactions, known as oxynitrations may proceed by mercuration followed by nitroso-demercuration the resulting nitroso compound becomes a diazonium compound and then a phenol, which is nitrated. ... [Pg.3]

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

If one is absolutely serious about ultra pure safrole then it can be separated from the eugenol-free sassafras oil by treatment with mercuric acetate [1,2,3,4] which likes that terminal double bond that only safrole has. The Hg(AcO)2 latches on to safrole at that double bond bringing it into solution as a solid sort of like the way that eugenol was. The safrole can then be separated from its still oily buddies by vacuum filtration. Safrole is then regenerated to its normal oily form by treatment with hydrochloric acid (HCI) which flicks the Hg(AcO)2 off the safrole and the safrole double bond reforms. As it so happens, the mercuric acetate also reforms intact so that it can be reused again such as in one of those... [Pg.34]

Ether - Starting fluid (works great - Quaaaaack ) 2. Home made mercuric acetate (Now this stuff can be special ordered from ones chem supplier but there s a delay, may look funny - Quaaaaack , and is more expensive. So what is the solution to this Make it yourself Its easy, quantitative, and cheaper. Strike mentions this in the book and points ducks to a reference. Follow the EXACT same procedure for Mercuric Propionate except use glacial acetic acid...quack ). You ll need to use 20 to 25% more of the home brew mercuric acetate since it is a little contaminated with acetic (ducks can t get it totally dry without a vacuum oven). 3. NaOH washed Brazillian is fine Quack No need to purify further for starting material ... [Pg.90]

The acetonitrile and mercuric nitrate amounts remain the same except they are to be accompanied by 12.6g of fuming nitric acid (see chemicals section) in the reaction flask. Then, with cooling, the safrole or allylbenzene is added just like before. The reaction is immediate and takes no more than 20 minutes of stirring after which lOOmL ice cold dH20 is slowly added. Next, with vigorous stirring, saturated sodium chloride solution is slowly added until a pronounced precipitate forms. This yellowish mass is the chloride. [Pg.195]

Terminal alkyne anions are popular reagents for the acyl anion synthons (RCHjCO"). If this nucleophile is added to aldehydes or ketones, the triple bond remains. This can be con verted to an alkynemercury(II) complex with mercuric salts and is hydrated with water or acids to form ketones (M.M.T. Khan, 1974). The more substituted carbon atom of the al-kynes is converted preferentially into a carbonyl group. Highly substituted a-hydroxyketones are available by this method (J.A. Katzenellenbogen, 1973). Acetylene itself can react with two molecules of an aldehyde or a ketone (V. jager, 1977). Hydration then leads to 1,4-dihydroxy-2-butanones. The 1,4-diols tend to condense to tetrahydrofuran derivatives in the presence of acids. [Pg.52]

Mercuric acetate heated for 18 hr at 100°C in acetic acid with 2-acetamidothiazole yields 2-acetamido-4,5-diacetoxymercurithiazole (214) (396). This product may then be transformed to the 4.5-diiodo derivative of 2-acetamidothiazole (215) (Scheme 135). [Pg.82]

In acetic acid, mercuration occurs at the 5-position at room temperature. At 60 to 70°C in the case of arylthiazoles, where the 5-position is unsubstituted, mercuration also takes place at the para-position of the phenyl ring (861). [Pg.380]

Acetic acid, fp 16.635°C ((1), bp 117.87°C at 101.3 kPa (2), is a clear, colorless Hquid. Water is the chief impurity in acetic acid although other materials such as acetaldehyde, acetic anhydride, formic acid, biacetyl, methyl acetate, ethyl acetoacetate, iron, and mercury are also sometimes found. Water significantly lowers the freezing point of glacial acetic acid as do acetic anhydride and methyl acetate (3). The presence of acetaldehyde [75-07-0] or formic acid [64-18-6] is commonly revealed by permanganate tests biacetyl [431-03-8] and iron are indicated by color. Ethyl acetoacetate [141-97-9] may cause slight color in acetic acid and is often mistaken for formic acid because it reduces mercuric chloride to calomel. Traces of mercury provoke catastrophic corrosion of aluminum metal, often employed in shipping the acid. [Pg.64]

Many catalytic systems have been described acidic solutions of mercuric salts are the most generally used. This process has long been superseded by more economical routes involving oxidation of ethylene or other hydrocarbons. [Pg.102]

Hydrogenation gives aUyl alcohol [107-18-6] C H O, its isomer propanal [123-38-6] (20), or propanol, C H O [71-23-8] (21). With acidic mercuric salt catalysts, water adds to give acetol, hydroxyacetone, C2H 02 [116-09-6] (22). [Pg.104]

Uncatalyzed addition of hydrochloric acid is accompanied by replacement of one hydroxyl group, giving high yields of 2,4-dichloro-2-buten-l-ol (58) with mercuric or cupric salt catalysts, addition occurs without substitution (59,60). [Pg.105]

Treatment with acidic catalysts dehydrates i j -butenediol to 2,5-dihydrofuran [1708-29-8], C H O (100). Cupric (101) or mercuric (102) salts give 2,5-divinyl-l,4-dioxane [21485-51-8], presumably via 3-butene-l,2-diol. [Pg.107]

Heating butanediol with acetylene in the presence of an acidic mercuric salt gives the cycHc acetal expected from butanediol and acetaldehyde (128). A commercially important reaction is with diisocyanates to form polyurethanes (129) (see Urethane POLYMERS). [Pg.108]

With Lewis acids as catalysts, compounds containing more than one alkoxy group on a carbon atom add across vinyl ether double bonds. Acetals give 3-alkoxyacetals since the products are also acetals, they can react further with excess vinyl ether to give oligomers (228—230). Orthoformic esters give diacetals of malonaldehyde (231). With Lewis acids and mercuric salts as catalysts, vinyl ethers add in similar fashion to give acetals of 3-butenal (232,233). [Pg.115]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]


See other pages where Mercuric acid is mentioned: [Pg.138]    [Pg.965]    [Pg.58]    [Pg.30]    [Pg.965]    [Pg.138]    [Pg.161]    [Pg.138]    [Pg.965]    [Pg.58]    [Pg.30]    [Pg.965]    [Pg.138]    [Pg.161]    [Pg.256]    [Pg.291]    [Pg.324]    [Pg.484]    [Pg.492]    [Pg.495]    [Pg.527]    [Pg.173]    [Pg.198]    [Pg.88]    [Pg.100]    [Pg.100]    [Pg.342]    [Pg.346]    [Pg.293]   
See also in sourсe #XX -- [ Pg.156 ]

See also in sourсe #XX -- [ Pg.156 ]




SEARCH



© 2024 chempedia.info