Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDUSTRIAL COPOLYMERS

Tire industry copolymer of styrene and butadiene in 1 3 ratio SBR Rubber caoutchouc (isopr. polymer)... [Pg.268]

Thus the combination of surface characterization methods with polymer characterization methods gives new insights into the properties of this important industrial copolymer system and demonstrates the effectiveness of these methods in distinguishing between different techniques of polymerization. [Pg.87]

Monomer syntheses and their industrial polymerization and copolymerization were initiated in the thirties by IG Farbenindustrie, now BASF, and this company is still the main producer. Other companies, as GAF Corporation and Union Carbide in the United States or ICI in the United Kingdom came on the market at a later time. Actually BASF is the only producer of homopolymers, whereas copolymers are manufactured by BASF and GAF Co. We shall not consider here the synthesis of the industrial copolymers of methylvinyl ether and maleic anhydride (Gantrez-GAF, Sokalan-BASF), of isobutylvinyl ether and vinyl chloride (Laroflex MP 15-60, BASF), and of isobutylvinyl ether and acrylic monomers (Acro-nal, BASF) as they are produced by radical copolymerization. [Pg.711]

Rapid, accurate analysis of copolymer products is critical to the efficiency and economy of modern industrial copolymer production. Infrared spectroscopy is a well established technique for both qualitative and quantitative analysis of polymeric materials (1, 2). However, the coupling of relatively low-cost data handling hardware and software to a microprocessor-controlled infrared spectrophotometer is a relatively recent development. This coupling considerably enhances the level of performance one can expect from quantitative infrared spectroscopy. The result is that such systems greatly reduce the effort, expense, and time required for a given analysis and simultaneously provide improved accuracy, reliability, and precision. This paper will describe a recently developed, commercially available software system which will be referred to hereafter as QUANT. In the course of application research with the QUANT software a wide variety of copolymer systems... [Pg.185]

General Description Polyethylenes consist of a family of thermoplastic resins obtained by polymerizing the gas ethylene [C2H4]. High molecular weight polymers (i.e., over 6,000) are the materials used in the plastics industry. Copolymers of ethylene with vinyl acetate, ethyl acrylate, and acrylic acid are commercially important,... [Pg.89]

This same reaction has been reproduced some years later by Burks et al. [7] and amorphous copolymers 2a and 2b were prepared, and studied as thermostable elastomers for the aeronautic industry. Copolymer 2a or poly[l,4-bis(oxydimethylsilyl)benzene dimethylsUane] exhibited a glass transition temperature Tg = - 63 °C and a very good stability at high temperature. Copolymer 2b or poly[l,4-bis(oxydimethylsilyl)benzene diphenylsilane] exhibited a Tg = 0 °C and a higher stability at high temperature. [Pg.5]

Copolymers of ethylene with olefin monomers CH2=CH-(CH2) -CH3 and CH2=CH-CH2-CH2-CH(CH3)2 are the most widely used class of industrial copolymers. Most important is linear low-density polyethylene (LLDPE), which is a copolymer involving ethylene and the structural units ... [Pg.11]

Ham, G. E. (ed.), Copolymerization , Interscience, New York, 1964. The theory of copolymerization is developed, and its practical application to industrial copolymers is pointed out High Polym., vol. 18). [Pg.1407]

Prepared generally by ester interchange from polyvinylacelate (ethanoate) using methanol and base also formed by hydrolysis of the acetate by NaOH and water. The properties of the poly(vinyl alcohol) depend upon the structure of the original polyvinyl acetate. Forms copolymers. Used as a size in the textile industry, in aqueous adhesives, in the production of polyvinyl acetates (e.g. butynal) for safety glasses. U.S. production 1980... [Pg.323]

An important industrial example of W/O emulsions arises in water-in-crude-oil emulsions that form during production. These emulsions must be broken to aid transportation and refining [43]. These suspensions have been extensively studied by Sjoblom and co-workers [10, 13, 14] and Wasan and co-workers [44]. Stabilization arises from combinations of surface-active components, asphaltenes, polymers, and particles the composition depends on the source of the crude oil. Certain copolymers can mimic the emulsion stabilizing fractions of crude oil and have been studied in terms of their pressure-area behavior [45]. [Pg.508]

Superabsorbents. Water-sweUable polymers are used extensively in consumer articles and for industrial appUcations. Most of these polymers are cross-linked acryUc copolymers of metal salts of acryUc acid and acrylamide or other monomers such as 2-acrylamido-2-methylpropanesulfonic acid. These hydrogel forming systems can have high gel strength as measured by the shear modulus (134). Sometimes inorganic water-insoluble powder is blended with the polymer to increase gel strength (135). Patents describe processes for making cross-linked polyurethane foams which contain superabsorbent polymers (136,137). [Pg.144]

Emulsion Polymerization. Emulsion polymerization is the most important industrial method for the preparation of acryhc polymers. The principal markets for aqueous dispersion polymers made by emulsion polymerization of acryhc esters are the paint, paper, adhesives, textile, floor pohsh, and leather industries, where they are used principally as coatings or binders. Copolymers of either ethyl acrylate or butyl acrylate with methyl methacrylate are most common. [Pg.168]

Solution polymers are the second most important use for acryflc monomers, accounting for about 12% of the monomer consumption. The major end use for these polymers is in coatings, primarily industrial finishes. Other uses of acryflc monomers include graft copolymers, suspension polymers, and radiation curable inks and coatings. [Pg.171]

Hydrophobe-modified copolymers of acrylate esters with acryflc or methacryflc acid are finding increasing use as high quality thickeners for both trade sales and industrial paints (186). Formulations thickened with these unique water-soluble polymers show excellent flow and leveling characteristics. [Pg.171]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

In the late 1960s a new class of AN copolymers and multipolymers was introduced that contain >60% acrylonitrile. These are commonly known as barrier resins and have found thek greatest acceptance where excellent barrier properties toward gases (5), chemicals, and solvents are needed. They may be processed into bottles, sheets, films, and various laminates, and have found wide usage in the packaging industry (see Barrier polymers). [Pg.191]

Aldehydes fiad the most widespread use as chemical iatermediates. The production of acetaldehyde, propionaldehyde, and butyraldehyde as precursors of the corresponding alcohols and acids are examples. The aldehydes of low molecular weight are also condensed in an aldol reaction to form derivatives which are important intermediates for the plasticizer industry (see Plasticizers). As mentioned earlier, 2-ethylhexanol, produced from butyraldehyde, is used in the manufacture of di(2-ethylhexyl) phthalate [117-87-7]. Aldehydes are also used as intermediates for the manufacture of solvents (alcohols and ethers), resins, and dyes. Isobutyraldehyde is used as an intermediate for production of primary solvents and mbber antioxidants (see Antioxidaisits). Fatty aldehydes Cg—used in nearly all perfume types and aromas (see Perfumes). Polymers and copolymers of aldehydes exist and are of commercial significance. [Pg.474]

Homogeneous GopolymeriZation. Nearly all acryhc fibers are made from acrylonitrile copolymers containing one or more additional monomers that modify the properties of the fiber. Thus copolymerization kinetics is a key technical area in the acryhc fiber industry. When carried out in a homogeneous solution, the copolymerization of acrylonitrile foUows the normal kinetic rate laws of copolymerization. Comprehensive treatments of this general subject have been pubhshed (35—39). The more specific subject of acrylonitrile copolymerization has been reviewed (40). The general subject of the reactivity of polymer radicals has been treated in depth (41). [Pg.278]

A description of modified ethylene—tetrafluoroethylene copolymers and their classification is given by the American Society for Testing and Materials under the designation D3159-83 (36). A comprehensive listing of industrial and military specifications is avaHable (37). [Pg.370]

Peifluoioalkoxy (PFA) fluoiocaibon lesins aie designed to meet industry s needs in chemical, electrical, and mechanical appHcations. These melt processible copolymers contain a fluorocarbon backbone in the main chain and randomly distributed perfluorinated ether side chains ... [Pg.373]

Foam Control. Whereas some siUcones are known to be foam promoters, Dow Corning FS-1265 Fluid is a Hquid fluorosiUcone with effective antifoam properties. Petroleum industry appHcation of fluids and dispersions in gas—oil separators on offshore drilling platforms has been successful. Their use peaked in the early 1980s, coinciding with constrained cmde oil capacity and production. Diesel fuels are an excellent solvent for dimethyl silicones and render them ineffective as an antifoam. A new antifoam which does not require the use of added siUca is formulated from a fluorosiUcone copolymer. It has shown promise to antifoam (8) diesel fuel (see Defoamers). [Pg.401]

Pressure sensitive adhesives typically employ a polymer, a tackifier, and an oil or solvent. Environmental concerns are moving the PSA industry toward aqueous systems. Polymers employed in PSA systems are butyl mbber, natural mbber (NR), random styrene—butadiene mbber (SBR), and block copolymers. Terpene and aUphatic resins are widely used in butyl mbber and NR-based systems, whereas PSAs based on SBR may require aromatic or aromatic modified aUphatic resins. [Pg.358]

For substrates of WORM and EOD(PCR) disks the industry in the future wants polymers that have a markedly improved resistance to heat softening compared to BPA-PC and, if possible, a lower water absorption and lower birefringence, but otherwise maintain the good characteristics in toughness, production, and cost (194). This goal is being approached in different ways further modification of BPA-PC, newly developed polymers, improvement of the processing characteristics of uv-curable cross-linked polymers, and development of special copolymers and polymer blends, eg,... [Pg.158]

Radicals are employed widely in the polymer industry, where their chain-propagating behavior transforms vinyl monomers into polymers and copolymers. The mechanism of addition polymeri2ation involves all three types of reactions discussed above, ie, initiation, propagation by addition to carbon—carbon double bonds, and termination ... [Pg.219]

Within the scope of the original definition, a very wide variety of ionomers can be obtained by the introduction of acidic groups at molar concentrations below 10% into the important addition polymer families, followed by partial neutralization with metal cations or amines. Extensive studies have been reported, and useful reviews of the polymers have appeared (3—8). Despite the broad scope of the field and the unusual property combinations obtainable, commercial exploitation has been confined mainly to the original family based on ethylene copolymers. The reasons for this situation have been discussed (9). Within certain industries, such as flexible packaging, the word ionomer is understood to mean a copolymer of ethylene with methacrylic or acryhc acid, partly neutralized with sodium or zinc. [Pg.404]

The uniqueness of methyl methacrylate as a plastic component accounts for its industrial use in this capacity, and it far exceeds the combined volume of all of the other methacrylates. In addition to plastics, the various methacrylate polymers also find appHcation in sizable markets as diverse as lubricating oil additives, surface coatings (qv), impregnates, adhesives (qv), binders, sealers (see Sealants), and floor poHshes. It is impossible to segregate the total methacrylate polymer market because many of the polymers produced are copolymers with acrylates and other monomers. The total 1991 production capacity of methyl methacrylate in the United States was estimated at 585,000 t/yr. The worldwide production in 1991 was estimated at about 1,785,000 t/yr (3). [Pg.259]


See other pages where INDUSTRIAL COPOLYMERS is mentioned: [Pg.111]    [Pg.63]    [Pg.101]    [Pg.157]    [Pg.463]    [Pg.11]    [Pg.167]    [Pg.333]    [Pg.76]    [Pg.111]    [Pg.63]    [Pg.101]    [Pg.157]    [Pg.463]    [Pg.11]    [Pg.167]    [Pg.333]    [Pg.76]    [Pg.321]    [Pg.329]    [Pg.262]    [Pg.470]    [Pg.143]    [Pg.143]    [Pg.197]    [Pg.76]    [Pg.517]    [Pg.201]    [Pg.259]    [Pg.371]    [Pg.420]   


SEARCH



Industrial Applications and Devices Using Block Copolymers

© 2024 chempedia.info