Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters ketones

Besides condensation reactions to form heavy ends, polyester ketones are formed by the decomposition of acetyl iodide to polyester polyketones (eq. (22)) following a mechanism similar to the decomposition of acetyl chloride [64d,ej. [Pg.119]

Ethyl acetate [79-20-9] is a colorless, neutral liquid that is partially miscible with water and has a pleasant, fruity odor. It has a good solvency for cellulose nitrate, cellulose ethers, chlorinated rubber, poly(vinyl acetate), vinyl chloride copolymers, polyacrylates, polystyrene, fats, oils, and many natural and synthetic resins (alkyd resins, saturated polyesters, ketone resins). Cellulose acetate is, however, dissolved only in the presence of small amounts of ethanol. Poly(vinyl chloride) is insoluble. [Pg.363]

Colgupoum, H. M., Lewie, D. F. (1988). Synthesis of Aromatic Polyester-Ketones in Triflouromethanesulphonic Acid. Polym, 29(10), 1902. [Pg.186]

Polyester Ketone and Method of Producing the Same US Patent 7217780. International Patent Catalogue C 08 G 14/04. 2006. [Pg.191]

Method for producing aromatic polyester ketones and polythioester ketones, US Patent 4661581. [Pg.177]

Uncrosslinked-linked thermoplastic reprocessible polyester ketone and method for its production, Germany Patent Apphcation 3416445 A. [Pg.177]

Crystalline aromatic polyester ketones and method for producing same, Japan Patent Apphcation, 61-91165. [Pg.178]

Chu, F. K., Hawker, C. J. (1993). Different syntheses of isomeric hyper branched polyester ketones Polym. Bull, 30(3), 265-272. [Pg.181]

Liu Xiao-Ling, Xu Hai-Yun, Cai Ming-Zhong (2001). Synthesis and properties of statistical copolymers ofpolyesterketoneketone and polyester ketone ester ketone ketone containing naphthalene cycle with on the main chain J. Jiangxi Norm. Univ Natur Sci. Ed. 25(4), 292-294. [Pg.183]

The primary and secondary alcohol functionahties have different reactivities, as exemplified by the slower reaction rate for secondary hydroxyls in the formation of esters from acids and alcohols (8). 1,2-Propylene glycol undergoes most of the typical alcohol reactions, such as reaction with a free acid, acyl hahde, or acid anhydride to form an ester reaction with alkaU metal hydroxide to form metal salts and reaction with aldehydes or ketones to form acetals and ketals (9,10). The most important commercial appHcation of propylene glycol is in the manufacture of polyesters by reaction with a dibasic or polybasic acid. [Pg.366]

Ketone Peroxides. These materials are mixtures of compounds with hydroperoxy groups and are composed primarily of the two stmctures shown in Table 2. Ketone peroxides are marketed as solutions in inert solvents such as dimethyl phthalate. They are primarily employed in room-temperature-initiated curing of unsaturated polyester resin compositions (usually containing styrene monomer) using transition-metal promoters such as cobalt naphthenate. Ketone peroxides contain the hydroperoxy (—OOH) group and thus are susceptible to the same ha2ards as hydroperoxides. [Pg.228]

Oxidation. Ketones are oxidized with powerful oxidizing agents such as chromic or nitric acid. During oxidation, carbon—carbon bond cleavage occurs to produce carboxyHc acids. Ketone oxidation with hydrogen peroxide, or prolonged exposure to air and heat, can produce peroxides. Concentrated solutions of ketone peroxides (>30%) may explode, but dilute solutions are useful in curing unsaturated polyester resin mixtures (see... [Pg.487]

Direct oxidation yields biacetyl (2,3-butanedione), a flavorant, or methyl ethyl ketone peroxide, an initiator used in polyester production. Ma.nufa.cture. MEK is predominandy produced by the dehydrogenation of 2-butanol. The reaction mechanism (11—13) and reaction equihbtium (14) have been reported, and the process is in many ways analogous to the production of acetone (qv) from isopropyl alcohol. [Pg.489]

The reaction rate of fumarate polyester polymers with styrene is 20 times that of similar maleate polymers. Commercial phthaHc and isophthaHc resins usually have fumarate levels in excess of 95% and demonstrate full hardness and property development when catalyzed and cured. The addition polymerization reaction between the fumarate polyester polymer and styrene monomer is initiated by free-radical catalysts, commercially usually benzoyl peroxide (BPO) and methyl ethyl ketone peroxide (MEKP), which can be dissociated by heat or redox metal activators into peroxy and hydroperoxy free radicals. [Pg.317]

Cobalt salts are used as activators for catalysts, fuel cells (qv), and batteries. Thermal decomposition of cobalt oxalate is used in the production of cobalt powder. Cobalt compounds have been used as selective absorbers for oxygen, in electrostatographic toners, as fluoridating agents, and in molecular sieves. Cobalt ethyUiexanoate and cobalt naphthenate are used as accelerators with methyl ethyl ketone peroxide for the room temperature cure of polyester resins. [Pg.382]

Polyesters. Unsaturated polyester resins based on DCPD, maleic anhydride, and glycols have been manufactured for many years. At least four ways of incorporating DCPD into these resins have been described (45). The resins are mixed with a cross-linking compound, usually styrene, and final polymerization is accompHshed via a free-radical initiator such as methyl ethyl ketone peroxide. [Pg.434]

Furane resins are superior to polyesters and epoxies for resistance to ketones, chlorinated solvents and carbon disulfide. However, as they are... [Pg.121]

Methyl ethyl ketone may also he produced hy the catalyzed dehydrogenation of sec-hutanol over zinc oxide or brass at about 500°C. The yield from this process is approximately 95%. MEK is used mainly as a solvent in vinyl and acrylic coatings, in nitrocellulose lacquers, and in adhesives. It is a selective solvent in dewaxing lubricating oils where it dissolves the oil and leaves out the wax. MEK is also used to synthesize various compounds such as methyl ethyl ketone peroxide, a polymerization catalyst used to form acrylic and polyester polymers and methyl pentynol by reacting with acetylene ... [Pg.242]

Another approach is to use an easily oxidized substance such as acetaldehyde or methylethyl ketone, which, under the reaction conditions, forms a hydroperoxide. These will accelerate the oxidation of the second methyl group. The DMT process encompasses four major processing steps oxidation, esterification, distillation, and crystallization. Figure 10-16 shows a typical p-xylene oxidation process to produce terephthalic acid or dimethyl terephthalate. The main use of TPA and DMT is to produce polyesters for synthetic fiber and film. [Pg.296]

Polyester/ polyisocyanate blends Air drying or stoving Addition polymerisation Blends rich in ketones and esters Alcohols excluded Fairly good Good Fairly good Very good Very good Finishes need to be supplied in two separate containers and mixed just prior to use... [Pg.579]

About 8,000 metric tons of peroxides were consumed in 1972. This consumption was strongly stimulated by the rapid growth in reinforced plastics (Ref 23). The largest volume product is benzoyl peroxide which is used in polystyrene and polyester markets for such items as toys, automobiles, furniture, marine, transportation and mil requirements. Also, methyl ethyl ketone peroxide is used in large volumes to cure (as a catalyst) styrene-unsatur-ated polyester adhesive resins used in mil ammo adhesive applications, as well as in glass fiber reinforced plastic products such as boats, shower stalls, tub components, automobile bodies, sports equipment, etc. The monoperesters are growing slowly because of some substitution of the peroxydicarbonates and azo compds (Refs 8,9 23)... [Pg.676]

The semicrystalline polyesters of the terephthalate and naphthalate family are resistant to a wide range of chemicals at room temperature, including water, alcohols, ketones, ethers, glycols, chlorinated solvents, aliphatic hydrocarbons, and oils. They are slowly hydrolyzed in boiling water and rapidly degraded in strongly basic or acidic medium. [Pg.45]

VI a) Tricresyl phosphate, aliphatic ketones and esters, dioxane. polyesters... [Pg.238]

The SEC mechanism demands only an isocratic (constant composition) solvent system with normally a single solvent. The most frequently used organic solvents are THF, chloroform, toluene, esters, ketones, DMF, etc. The key solvent parameters of interest in SEC are (i) solubility parameter (ii) refractive index (iii) UV/IR absorbance (iv) viscosity and (v) boiling point. Sample solutions are typically prepared at concentrations in the region of 0.5-5 mg mL-1. In general an injection volume of 25-100p,L per 300 x 7.5 mm column should be employed. For SEC operation with polyolefins chlorinated solvents (for detector sensitivity and increased boiling point) and elevated temperatures (110 to 150 °C) are required to dissolve olefin polymer. HFIP is the preferred solvent for SEC analysis of polyesters and polyamides. [Pg.259]

Polyesters are, in general, organic solvent resistant. They show excellent room temperature resistance to organic solvents, such as hydrocarbons, alcohols, and chlorinated hydrocarbons. At slightly elevated temperatures of approximately 60 °C, alcohols and aromatic solvents can damage the polymer. Strong acids and bases can cause chemical damage to polyesters, as can ketones and phenols. [Pg.379]


See other pages where Polyesters ketones is mentioned: [Pg.158]    [Pg.448]    [Pg.177]    [Pg.96]    [Pg.158]    [Pg.448]    [Pg.177]    [Pg.96]    [Pg.93]    [Pg.300]    [Pg.321]    [Pg.467]    [Pg.83]    [Pg.18]    [Pg.55]    [Pg.786]    [Pg.54]    [Pg.115]    [Pg.56]    [Pg.341]    [Pg.636]    [Pg.578]    [Pg.715]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



Polyester ether ketone

© 2024 chempedia.info