Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene monomers containing

Synthesis of a styrene monomer containing a diiron hexacarbonyl moiety and its copolymer together with the metal atom of the preferred copolymers has been achieved [6]. (3) and (4) (Fig. 2) undergo free radical copolymerization with... [Pg.93]

Another method of making HIPS is to first dissolve a rubber in the styrene monomer and then to polymerize the monomer. A styrene monomer containing the dissolved poly(butadiene) rubber is flowed into a polymerization, wherein the styrene monomer is polymerized to form a HIPS (7). [Pg.271]

Problem 1.3 Styrene monomer containing 0.02% (by wt.) benzoyl peroxide initiator was reacted until all the initiator was consumed. If at this stage 22% of the monomer remained unreacted, calculate the average degree of polymerization of the polymer formed. Assume 100% efficiency of the initiator (i.e., all initiator molecules are actually consumed in polymer formation) and termination of chain radicals by coupling alone. [Pg.14]

The synthesis of cationic organoiron containing polymethacrylates and polystyrenes has been reported. The radical polymerization of methacrylate and styrene monomers containing cationic cyclopentadienyliron complexes produced polymers with cationic cyclopentadienyliron complexes in their side chains (Scheme 2.57).265,266 Monomer 216 and polymer 217 were both redox active and underwent reversible reduction processes. An organic analog of the cationic organoiron polymer was obtained by photolytic cleavage of the cationic cyclopentadienyliron... [Pg.92]

HIPS) is produced commercially by the emulsion polymerization of styrene monomer containing dispersed particles of polybutadiene or styrene-butadiene (SBR) latex. The resulting product consists of a glassy polystyrene matrix in which small domains of polybutadiene are dispersed. The impact strength of HIPS depends on the size, concentration, and distribution of the polybutadiene particles. It is influenced by the stereochemistry of polybutadiene, with low vinyl contents and 36% d5-l,4-polybutadiene providing optimal properties. Copolymers of styrene and maleic anhydride exhibit improved heat distortion temperature, while its copolymer with acrylonitrile, SAN — typically 76% styrene, 24% acrylonitrile — shows enhanced strength and chemical resistance. The improvement in the properties of polystyrene in the form of acrylonitrile-butadiene-styrene terpolymer (ABS) is discussed in Section VILA. [Pg.431]

Kawabe, M. Murata M. Syndiospecific living block copolymeiization of styrenic monomers containing functional groups, and preparation of syndiotactic poly (4-hydroxystyrene)-hZoc -[(4-methylstyrene)-co-(4-hydroxystyrene)]. Macromol. Chem. Phys. 2002, 203, 24—30. [Pg.396]

Furukawa et prepared styrene monomers containing phosphorus... [Pg.372]

Problem 7-1 (Level 2) An ideal CSTR is to be sized for the polymerization of styrene monomer to polystyrene. Pure styrene monomer containing a small amount of the free-radical initiator 2,2 -azobisisobutyronitrile (AIBN) will be fed to the reactor as a... [Pg.232]

Ketone Peroxides. These materials are mixtures of compounds with hydroperoxy groups and are composed primarily of the two stmctures shown in Table 2. Ketone peroxides are marketed as solutions in inert solvents such as dimethyl phthalate. They are primarily employed in room-temperature-initiated curing of unsaturated polyester resin compositions (usually containing styrene monomer) using transition-metal promoters such as cobalt naphthenate. Ketone peroxides contain the hydroperoxy (—OOH) group and thus are susceptible to the same ha2ards as hydroperoxides. [Pg.228]

One of the key benefits of anionic PS is that it contains much lower levels of residual styrene monomer than free-radical PS (167). This is because free-radical polymerization processes only operate at 60—80% styrene conversion, whereas anionic processes operate at >99% styrene conversion. Removal of unreacted styrene monomer from free-radical PS is accompHshed using continuous devolatilization at high temperature (220—260°C) and vacuum. This process leaves about 200—800 ppm of styrene monomer in the product. Taking the styrene to a lower level requires special devolatilization procedures such as steam stripping (168). [Pg.517]

Today the common practice is first to dissolve the rubber in the styrene monomer and then to polymerise the styrene in the usual way. By this process the resultant blend will contain not only rubber and polystyrene but also a graft polymer where short styrene side chains have been attached to the rubber molecules. This gives a marked improvement in the impact strengths that can be obtained. [Pg.438]

Occupational and environmental exposure to chemicals can take place both indoors and outdoors. Occupational exposure is caused by the chemicals that are used and produced indoors in industrial plants, whereas nonoccupa-tional (and occupational nonindustrial) indoor exposure is mainly caused by products. Toluene in printing plants and styrene in the reinforced plastic industry are typical examples of the two types of industrial occupational exposures. Products containing styrene polymers may release the styrene monomer into indoor air in the nonindustrial environment for a long time. Formaldehyde is another typical indoor pollutant. The source of formaldehyde is the resins used in the production process. During accidents, occupational and environmental exposures may occur simultaneously. Years ago, dioxin was formed as a byproduct of production of phenoxy acid herbicides. An explosion in a factory in... [Pg.255]

Kondo maintained his interest in this area, and with his collaborators [62] he recently made detailed investigations on the polymerization and preparation of methyl-4-vinylphenyl-sulfonium bis-(methoxycarbonyl) meth-ylide (Scheme 27) as a new kind of stable vinyl monomer containing the sulfonium ylide structure. It was prepared by heating a solution of 4-methylthiostyrene, dimethyl-diazomalonate, and /-butyl catechol in chlorobenzene at 90°C for 10 h in the presence of anhydride cupric sulfate, and Scheme 27 was polymerized by using a, a -azobisi-sobutyronitrile (AIBN) as the initiator and dimethylsulf-oxide as the solvent at 60°C. The structure of the polymer was confirmed by IR and NMR spectra and elemental analysis. In addition, this monomeric ylide was copolymerized with vinyl monomers such as methyl methacrylate (MMA) and styrene. [Pg.379]

Polyaddition reactions based on isocyanate-terminated poly(ethylene glycol)s and subsequent block copolymerization with styrene monomer were utilized for the impregnation of wood [54]. Hazer [55] prepared block copolymers containing poly(ethylene adipate) and po-ly(peroxy carbamate) by an addition of the respective isocyanate-terminated prepolymers to polyazoesters. By both bulk and solution polymerization and subsequent thermal polymerization in the presence of a vinyl monomer, multiblock copolymers could be formed. [Pg.741]

These results, considered in relation to the direct addition tests of monomer and hydrogen cyanide in the previous table, demonstrate that there is no reason to expect styrene monomer extraction into soft drinks, even at levels well below those we can measure analytically. They also reinforce our hydrogen cyanide data. Further, they indicate that these beverages are not more extractive of Lopac containers than the normal simulating solvents. The tests confirm the chemical safety of the containers as beverage packages. [Pg.80]

For example, the molecular weight of unsaturated polyesters is controlled to less than 5000 g/mol. The low molecular weight of the unsaturated polyester allows solvation in vinyl monomers such as styrene to produce a low-viscosity resin. Unsaturated polyesters are made with monomers containing carbon-carbon double bonds able to undergo free-radical crosslinking reactions with styrene and other vinyl monomers. Crosslinking the resin by free-radical polymerization produces the mechanical properties needed in various applications. [Pg.4]

Certain commercially important crosslinking reactions are carried out with unsaturated polymers. For example, as will be described later in this chapter, polyesters can be made using bifunctional acids which contain a double bond. The resulting polymers have such double bonds at regular intervals along the backbone. These sites of unsaturation are then crosslinked by reaction with styrene monomer in a free-radical chain (addition) process to give a material consisting of polymer backbones and poly(styrene) copolymer crosslinks. [Pg.55]

The particles contain residual styrene monomer which strongly absorbs light at 2 k and 280 nm wavelength. [Pg.62]

As already shown, it is technically possible to incorporate additive functional groups within the structure of a polymer itself, thus dispensing with easily extractable small-molecular additives. However, the various attempts of incorporation of additive functionalities into the polymer chain, by copolymerisation or free radical initiated grafting, have not yet led to widespread practical use, mainly for economical reasons. Many macromolecular stabiliser-functionalised systems and reactive stabiliser-functionalised monomers have been described (cf. ref. [576]). Examples are bound-in chromophores, e.g. the benzotriazole moiety incorporated into polymers [577,578], but also copolymerisation with special monomers containing an inhibitor structural unit, leading to the incorporation of the antioxidant into the polymer chain. Copolymers of styrene and benzophenone-type UV stabilisers have been described [579]. Chemical combination of an antioxidant with the polymer leads to a high degree of resistance to (oil) extraction. [Pg.143]

The DIS monomer, unlike its iron analogue, did not homopolymerize with SnCl initiator even on heating. A plausible reason for this result is that this monomer contains a lone pair of elec-trons available for donation to Lewis acids.JU Thus side reactions similar to those of the previous two monomers would prevent propagation. However, the DIS monomer also underwent a free radical copolymerization reaction with styrene and AIBN initiation. [Pg.459]


See other pages where Styrene monomers containing is mentioned: [Pg.603]    [Pg.2496]    [Pg.261]    [Pg.137]    [Pg.602]    [Pg.433]    [Pg.397]    [Pg.641]    [Pg.318]    [Pg.603]    [Pg.2496]    [Pg.261]    [Pg.137]    [Pg.602]    [Pg.433]    [Pg.397]    [Pg.641]    [Pg.318]    [Pg.23]    [Pg.197]    [Pg.490]    [Pg.314]    [Pg.256]    [Pg.479]    [Pg.489]    [Pg.496]    [Pg.179]    [Pg.541]    [Pg.10]    [Pg.193]    [Pg.189]    [Pg.210]    [Pg.211]    [Pg.212]    [Pg.260]    [Pg.307]   


SEARCH



Content of residual styrene monomer in polystyrene containing food contact materials

Styrene monomer

Styrene-containing

Styrenic monomer, boron-containing

© 2024 chempedia.info