Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization reactions addition

The two reactive chlorine atoms at the opposite ends of the phosgene molecule determine the use of phosgene for addition reactions, polymerization reactions and for chain-enlargements. Other uses of phosgene are reactions with secondary amines to give imidoyl chlorides, with tertiary amines to form cationic complexes, with nitriles to produce heterocycles and with metal oxides to produce metal chlorides. [Pg.181]

Complexes 50-53 were also tested in the Kharasch addition of carbon tetrachloride to methyl methacrylate and styrene. Instead of the expected addition reaction polymerization products were obtained (see Chapter 22.3.8) [62]. [Pg.562]

Nylon 6, 11, and 12. This class of polymers is polymerized by addition reactions of ring compounds that contain both acid and amine groups on the monomer. [Pg.1018]

One type of polymerization reaction is the addition reaction in which successive repeat units add on to the chain. No other product molecules are formed, so the weight of the monomer and that of the repeat unit are identical in this case. A second category of polymerization reaction is the condensation reaction, in which one or two small molecules like water or HCl are eliminated for each chain linkage formed. In this case the molecular weight of the monomer and the... [Pg.3]

The three-step mechanism for free-radical polymerization represented by reactions (6.A)-(6.C) does not tell the whole story. Another type of free-radical reaction, called chain transfer, may also occur. This is unfortunate in the sense that it complicates the neat picture presented until now. On the other hand, this additional reaction can be turned into an asset in actual polymer practice. One of the consequences of chain transfer reactions is a lowering of the kinetic chain length and hence the molecular weight of the polymer without necessarily affecting the rate of polymerization. [Pg.388]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

Tetrafluoroethylene undergoes addition reactions typical of an olefin. It bums in air to form carbon tetrafluoride, carbonyl fluoride, and carbon dioxide (24). Under controlled conditions, oxygenation produces an epoxide (25) or an explosive polymeric peroxide (24). Trifluorovinyl ethers,... [Pg.349]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

The neat resin preparation for PPS is quite compHcated, despite the fact that the overall polymerization reaction appears to be simple. Several commercial PPS polymerization processes that feature some steps in common have been described (1,2). At least three different mechanisms have been pubUshed in an attempt to describe the basic reaction of a sodium sulfide equivalent and -dichlorobenzene these are S Ar (13,16,19), radical cation (20,21), and Buimett s (22) Sj l radical anion (23—25) mechanisms. The benzyne mechanism was ruled out (16) based on the observation that the para-substitution pattern of the monomer, -dichlorobenzene, is retained in the repeating unit of the polymer. Demonstration that the step-growth polymerization of sodium sulfide and /)-dichlorohenzene proceeds via the S Ar mechanism is fairly recent (1991) (26). Eurther complexity in the polymerization is the incorporation of comonomers that alter the polymer stmcture, thereby modifying the properties of the polymer. Additionally, post-polymerization treatments can be utilized, which modify the properties of the polymer. Preparation of the neat resin is an area of significant latitude and extreme importance for the end user. [Pg.442]

Polymerization Reactions. Polymerization addition reactions are commercially the most important class of reactions for the propylene molecule and are covered in detail elsewhere (see Olefin polymers, polypropylene). Many types of gas- or liquid-phase catalysts are used for this purpose. Most recently, metallocene catalysts have been commercially employed. These latter catalysts requite higher levels of propylene purity. [Pg.124]

Certain polymeric stmctures can also be blended with other coreactive polymers or multifunctional reactive oligomers that affect curing reactions when exposed to ir radiation. These coreactive polymers and cross-linking oligomers undergo condensation or addition reactions, which cause the formation of network stmctures (Table 9) (4,5,47). [Pg.430]

Polymerization. Polymerization reactions, which are addition reactions, are used to produce the principal products formed direcdy from butlylenes butyl elastomers polybutylenes and polyisobutylene (see Elastomers, synthetic Olefin polymers). [Pg.364]

A number of BMI resias based on this chemistry became commercially available through Rhc ne Poulenc for appHcation ia priated circuit boards and mol ding compounds and Rhc ne Poulenc recognized the potential of bismaleimides as building blocks for temperature-resistant thermoset systems. The basic chemistry, however, was not new, because the Michael addition reaction had been employed by Du Pont to obtain elastomeric reaction products from bismaleimides and Hquid polymeric organic diamines (15). [Pg.23]

The addition—reaction product of bisphenol A [80-05-07] and glycidyl methacrylate [106-91-2] is a compromise between epoxy and methacrylate resins (245). This BSI—GMA resin polymerizes through a free-radical induced covalent bonding of methacrylate rather than the epoxide reaction of epoxy resins (246). Mineral fillers coated with a silane coupling agent, which bond the powdered inorganic fillers chemically to the resin matrix, are incorporated into BSI—GMA monomer diluted with other methacrylate monomers to make it less viscous (245). A second monomer commonly used to make composites is urethane dimethacrylate [69766-88-7]. [Pg.493]

The chemical structure of SBR is given in Fig. 4. Because butadiene has two carbon-carbon double bonds, 1,2 and 1,4 addition reactions can be produced. The 1,2 addition provides a pendant vinyl group on the copolymer chain, leading to an increase in Tg. The 1,4 addition may occur in cis or trans. In free radical emulsion polymerization, the cis to trans ratio can be varied by changing the temperature (at low temperature, the trans form is favoured), and about 20% of the vinyl pendant group remains in both isomers. In solution polymerization the pendant vinyl group can be varied from 10 to 90% by choosing the adequate solvent and catalyst system. [Pg.586]

Process in wliich the addition of heat, catalyst or both, with or without pressure, causes the physical properties of the plastic to change through a chemical reaction. Reaction may be condensation, polymerization or addition reactions. [Pg.131]

Solvent polarity is also important in directing the reaction bath and the composition and orientation of the products. For example, the polymerization of butadiene with lithium in tetrahydrofuran (a polar solvent) gives a high 1,2 addition polymer. Polymerization of either butadiene or isoprene using lithium compounds in nonpolar solvent such as n-pentane produces a high cis-1,4 addition product. However, a higher cis-l,4-poly-isoprene isomer was obtained than when butadiene was used. This occurs because butadiene exists mainly in a transoid conformation at room temperature (a higher cisoid conformation is anticipated for isoprene) ... [Pg.308]

Ring opening polymerization may also occur by an addition chain reaction. For example, a ring opening reaction polymerizes trioxane to a polyacetal in the presence of an acid catalyst. Formaldehyde also produces the same polymer ... [Pg.314]

When an unsymmetrically substituted vinyl monomer such as propylene or styrene is polymerized, the radical addition steps can take place at either end of the double bond to yield either a primary radical intermediate (RCH2-) or a secondary radical (R2CH-). Just as in electrophilic addition reactions, however, we find that only the more highly substituted, secondary radical is formed. [Pg.241]

The same high reactivity of radicals that makes possible the alkene polymerization we saw in the previous section also makes it difficult to carry out controlled radical reactions on complex molecules. As a result, there are severe limitations on the usefulness of radical addition reactions in the laboratory. Tn contrast to an electrophilic addition, where reaction occurs once and the reactive cation intermediate is rapidly quenched in the presence of a nucleophile, the reactive intermediate in a radical reaction is not usually quenched, so it reacts again and again in a largely uncontrollable wav. [Pg.243]

Synthetic polymers can be classified as either chain-growth polymen or step-growth polymers. Chain-growth polymers are prepared by chain-reaction polymerization of vinyl monomers in the presence of a radical, an anion, or a cation initiator. Radical polymerization is sometimes used, but alkenes such as 2-methylpropene that have electron-donating substituents on the double bond polymerize easily by a cationic route through carbocation intermediates. Similarly, monomers such as methyl -cyanoacrylate that have electron-withdrawing substituents on the double bond polymerize by an anionic, conjugate addition pathway. [Pg.1220]


See other pages where Polymerization reactions addition is mentioned: [Pg.572]    [Pg.572]    [Pg.15]    [Pg.345]    [Pg.348]    [Pg.232]    [Pg.269]    [Pg.397]    [Pg.551]    [Pg.298]    [Pg.373]    [Pg.297]    [Pg.521]    [Pg.174]    [Pg.538]    [Pg.543]    [Pg.160]    [Pg.825]    [Pg.150]    [Pg.363]    [Pg.424]    [Pg.313]    [Pg.1304]    [Pg.5]    [Pg.212]    [Pg.406]    [Pg.939]    [Pg.1028]    [Pg.3]   


SEARCH



1,3-Butadiene, 1,2-addition reactions polymerization

Addition polymerization

Additional polymerization

Additives polymerization

Alkenes, addition reactions polymerization

Atom-Transfer Radical Addition (ATRA) and Polymerization Reactions (ATRP)

Chain Reaction or Addition Polymerization

Chemical reactions addition polymerization

Comparison of chain and step addition polymerizations reactions

Polymer chemistry addition polymerization reaction

Polymeric additives

Polymerization addition/chain-reaction

Polymerization reaction

Radical polymerization addition reactions

Thermodynamics of step and addition polymerization reactions

© 2024 chempedia.info