Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , water-soluble polymer

Poly(vinyl alcohol) is a useful water soluble polymer It cannot be prepared directly from vinyl alcohol because of the rapidity with which vinyl alcohol (H2C=CHOH) isomenzes to acetaldehyde Vinyl acetate however does not rearrange and can be polymerized to poly(vinyl acetate) How could you make use of this fact to prepare poly(vinyl alcohol)" ... [Pg.883]

Polylacrylic Acid) and Poly(methacrylic Acid). Glacial acrylic acid and glacial meth-acrylic acid can be polymerized to produce water-soluble polymers having the following structures ... [Pg.1013]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

Cationic monomers are used to enhance adsorption on waste soHds and faciHtate flocculation (31). One of the first used in water treatment processes (10) is obtained by the cyclization of dimethyldiallylammonium chloride in 60—70 wt % aqueous solution (43) (see Water). Another cationic water-soluble polymer, poly(dimethylarnine-fi9-epichlorohydrin) (11), prepared by the step-growth... [Pg.318]

Two inorganic water-soluble polymers, both polyelectrolytes in their sodium salt forms, have been known for some time poly(phosphoric acid) (12) and poly(siHcic acid) (13). A more exciting inorganic water-soluble polymer with nonionic... [Pg.318]

It is evident that the area of water-soluble polymer covets a multitude of appHcations and encompasses a broad spectmm of compositions. Proteins (qv) and other biological materials ate coveted elsewhere in the Eniyclopedia. One of the products of this type, poly(aspartic acid), may be developed into interesting biodegradable commercial appHcations (70,71). [Pg.322]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Solubility. Poly(ethylene oxide) is completely soluble in water at room temperature. However, at elevated temperatures (>98° C) the solubiUty decreases. It is also soluble in several organic solvents, particularly chlorinated hydrocarbons (see Water-SOLUBLE polymers). Aromatic hydrocarbons are better solvents for poly(ethylene oxide) at elevated temperatures. SolubiUty characteristics are Hsted in Table 1. [Pg.337]

Some polymers from styrene derivatives seem to meet specific market demands and to have the potential to become commercially significant materials. For example, monomeric chlorostyrene is useful in glass-reinforced polyester recipes because it polymerizes several times as fast as styrene (61). Poly(sodium styrenesulfonate) [9003-59-2] a versatile water-soluble polymer, is used in water-poUution control and as a general flocculant (see Water, INDUSTRIAL WATER TREATMENT FLOCCULATING AGENTs) (63,64). Poly(vinylhenzyl ammonium chloride) [70304-37-9] h.a.s been useful as an electroconductive resin (see Electrically conductive polya rs) (65). [Pg.507]

Poly(vinyl pyrrolidone) (PVP) was introduced by the Germans in World War II as a blood plasma substitute.A water-soluble polymer, its main value is due to its ability to form loose addition compounds with many substances. [Pg.474]

The polymers are of interest as water-soluble packaging films for a wide variety of domestic and industrial materials. (Additional advantages of the poly(ethylene oxide)s are that they remain dry to the feel at high humidities and may be heat sealed.) The materials are also of use in a number of solution application such as textile sizes and thickening agents. As a water-soluble film they are competitive with poly(vinyl alcohol) whereas in their solution applications they meet competition from many longer established natural and synthetic water-soluble polymers. [Pg.547]

Water-soluble polymers obtained through a radical polymerization [e.g., poly(acrylic acid) PAA] often contain sodium sulfate Na2S04 as a decomposition product of the initiator. The peak of Na2S04 is eluted before the dimer. In the interpretation of the chromatogram, a typical GPC program has to be truncated before the Na2S04 peak, or at a Mpaa value of about 200. The calibration curve in this region can be flattened by an additive small pore column as well, but the principle problem remains unsolved. [Pg.440]

Water-soluble polymers eomprise a major elass of polymerie materials and are used in a wide variety of applieations. Synthetie water-soluble polymers inelude poly(vinyl aleohol), poly(aerylamide), poly(aerylie aeid), poly(ethylene oxide), poly(vinyl pyrrolidone), eellulosies, and many eopolymers of these types. Their end uses are quite varied and their applieations depend mainly on their viseosify-ing, rheologieal, and surfaee-aetive properties (1). For example, poly (vinyl aleohol) is used in adhesives, fibers, textile and paper sizing, paekaging, as a stabilizer for emulsion polymerization, and as a preeursor for the manufaeture of poly(vinyl butyral), whieh is used in automotive windshields. Poly(vinyl aleohol) is also the world s largest volume, eommodity, water-soluble polymer. [Pg.559]

The end-use applieations of water-soluble polymers require aeeurate means to eharaeterize the moleeular weight distribution (MWD) and to provide a better understanding of produet performanee. The moleeular weight affeets many physieal properties sueh as solution viseosity, tensile strength, bloek resistanee, water and solvent resistanee, adhesive strength, and dispersing power. Commereially available polymers sueh as poly(vinyl aleohol). [Pg.559]

In previous works [18-20,23,102] water-soluble polymers such as polyacrylamide (pAM), polysodium acrylate (pAA Na), poly(acrylamide-sodium acrylate) (pAM-AA Na), poly(acrylamide-diallyethylamine-hy-drochloride) (pAM-DAEA-HCl), and poly(acrylamide-sodium acrylate-diallyethylamine-hydrochloride) (pAM-AANa-DAEA-HCl) were used in the recovery of cations and some radioactive isotopes from aqueous solutions. It was found that the floe is formed between the added polymer and ions of the solution in the flocculation process with the formation of a crosslinked structure. The formed cross-linked structure is characterized by [103-105] ... [Pg.128]

The majority of hydrophilic and water-soluble polymers are manufactured on the commercial level. Their list includes PAAm, copolymers of AAm, PAAc, PEO, PVA, poly(jY-vinylpyrrolidone), some polyamines etc. So, it seems practically highly attractive to produce hydrogels based on these polymers using various crosslinking techniques. [Pg.105]

It has been outlined by several authors that the single macromolecule may be irreversibly bound because of the large number of weakly interacting segments. The first papers on the construction of polymer-coated silica adsorbents involved the physical adsorption of water-soluble polymers. Polyethylene oxides [28, 29] and poly-/V-vinylpyrrolidone [30] are examples of the stationary phases of this type. [Pg.142]

Hydrophobic interactions of this kind have been assumed to originate because the attempt to dissolve the hydrocarbon component causes the development of cage structures of hydrogen-bonded water molecules around the non-polar solute. This increase in the regularity of the solvent would result in an overall reduction in entropy of the system, and therefore is not favoured. Hydrophobic effects of this kind are significant in solutions of all water-soluble polymers except poly(acrylic acid) and poly(acrylamide), where large heats of solution of the polar groups swamp the effect. [Pg.76]

Many synthetic water-soluble polymers are easily analyzed by GPC. These include polyacrylamide,130 sodium poly(styrenesulfonate),131 and poly (2-vinyl pyridine).132 An important issue in aqueous GPC of synthetic polymers is the effect of solvent conditions on hydrodynamic volume and therefore retention. Ion inclusion and ion exclusion effects may also be important. In one interesting case, samples of polyacrylamide in which the amide side chain was partially hydrolyzed to generate a random copolymer of acrylic acid and acrylamide exhibited pH-dependent GPC fractionation.130 At a pH so low that the side chain would be expected to be protonated, hydrolyzed samples eluted later than untreated samples, perhaps suggesting intramolecular hydrogen bonding. At neutral pH, the hydrolyzed samples eluted earlier than untreated samples, an effect that was ascribed to enlargement... [Pg.334]

Early soil-release agents, applied particularly to resin-finished cellulosic goods, were water-soluble polymers, many being related to thickeners (section 10.8) such as starch, hydroxypropyl starch, sodium carboxymethylcellulose, methylcellulose, hydroxyethyl-cellulose, alginates, poly(vinyl alcohol) and poly(vinylpyrrolidone). These functioned essentially as temporary barriers and preferential reservoirs for soil, which was thus easily removed along with the finish in subsequent washing, when they then helped to minimise... [Pg.266]

Cast with water soluble polymer from an aqueous solution. Poly(vinyl alcohol) is a suitable inert matrix for supporting bilayer membranes [37], Water solubility of the films composed with poly(vinyl alcohol) can be lowered by coating with celluloseacetate [38] and closs-linking of polymer [39]. [Pg.76]


See other pages where Poly , water-soluble polymer is mentioned: [Pg.316]    [Pg.316]    [Pg.350]    [Pg.42]    [Pg.472]    [Pg.477]    [Pg.477]    [Pg.46]    [Pg.327]    [Pg.572]    [Pg.573]    [Pg.238]    [Pg.873]    [Pg.665]    [Pg.236]    [Pg.434]    [Pg.104]    [Pg.14]    [Pg.261]    [Pg.502]    [Pg.579]    [Pg.154]    [Pg.267]    [Pg.247]    [Pg.527]    [Pg.585]    [Pg.114]    [Pg.1]   
See also in sourсe #XX -- [ Pg.1738 ]




SEARCH



Poly , solubility

Poly , water-soluble

Poly polymers

Polymers solubility

Soluble poly

Soluble polymers

Water polymers

Water-soluble polyme

Water-soluble polymers

© 2024 chempedia.info