Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Small pores

Nearly all reservoirs are water bearing prior to hydrocarbon charge. As hydrocarbons migrate into a trap they displace the water from the reservoir, but not completely. Water remains trapped in small pore throats and pore spaces. In 1942 Arch/ e developed an equation describing the relationship between the electrical conductivity of reservoir rock and the properties of its pore system and pore fluids. [Pg.147]

Lewis D W, Sankar G, Wyles J K, Thomas J M, Catlow C R A and Willock D J 1997 Synthesis of a small-pore microporous material using a computationally designed template Angew. Chem. Int. Ed. Engl. 36 2675-7... [Pg.2290]

The simplest way of introducing Che pore size distribution into the model is to permit just two possible sizes--Tnlcropores and macropotes--and this simple pore size distribution is not wholly unrealistic, since pelleted materials are prepared by compressing powder particles which are themselves porous on a much smaller scale. The small pores within the powder grains are then the micropores, while the interstices between adjacent grains form the macropores. An early and well known model due to Wakao and Smith [32] represents such a material by the Idealized structure shown in Figure 8,2,... [Pg.68]

An uneventful coupling of two hemispherical cavitand molecules — a tetrameth-anethiol and a tetrakis(chloromethyl)precursor (see p. 169) — yielded D.J. Cram s (1988) carcerand . ft entraps small molecules such as THF or DMF, cesium or chloride ions, or argon atoms as permanently imprisoned guests . Only water molecules are small enough to pass through the two small pores of this molecular (prison) cell. [Pg.356]

For nosetip materials 3-directional-reinforced (3D) carbon preforms are formed using small cell sizes for uniform ablation and small pore size. Figure 5 shows typical unit cell dimensions for two of the most common 3D nosetip materials. Carbon-carbon woven preforms have been made with a variety of cell dimensions for different appHcations (27—33). Fibers common to these composites include rayon, polyacrylonitrile, and pitch precursor carbon fibers. Strength of these fibers ranges from 1 to 5 GPa (145,000—725,000 psi) and modulus ranges from 300 to 800 GPa. [Pg.5]

In packed beds of particles possessing small pores, dilute aqueous solutions of hydroly2ed polyacrylamide will sometimes exhibit dilatant behavior iastead of the usual shear thinning behavior seen ia simple shear or Couette flow. In elongational flow, such as flow through porous sandstone, flow resistance can iacrease with flow rate due to iacreases ia elongational viscosity and normal stress differences. The iacrease ia normal stress differences with shear rate is typical of isotropic polymer solutions. Normal stress differences of anisotropic polymers, such as xanthan ia water, are shear rate iadependent (25,26). [Pg.140]

In very small pores the molecules never escape from the force field of the pore wall even at the center of the pore. In this situation the concepts of monolayer and multilayer sorption become blurred and it is more useful to consider adsorption simply as pore filling. The molecular volume in the adsorbed phase is similar to that of the saturated Hquid sorbate, so a rough estimate of the saturation capacity can be obtained simply from the quotient of the specific micropore volume and the molar volume of the saturated Hquid. [Pg.251]

Despite the difference ia the nature of the surface, the adsorptive behavior of the molecular sieve carbons resembles that of the small pore zeoHtes. As their name implies, molecular sieve separations are possible on these adsorbents based on the differences ia adsorption rate, which, ia the extreme limit, may iavolve complete exclusion of the larger molecules from the micropores. [Pg.252]

Fig. 2. Pore size distribution of typical samples of activated carbon (small pore gas carbon and large pore decolorizing carbon) and carbon molecular sieve (CMS). A / Arrepresents the increment of specific micropore volume for an increment of pore radius. Fig. 2. Pore size distribution of typical samples of activated carbon (small pore gas carbon and large pore decolorizing carbon) and carbon molecular sieve (CMS). A / Arrepresents the increment of specific micropore volume for an increment of pore radius.
Desiccants. A soHd desiccant is simply an adsorbent which has a high affinity and capacity for adsorption of moisture so that it can be used for selective adsorption of moisture from a gas (or Hquid) stream. The main requkements for an efficient desiccant are therefore a highly polar surface and a high specific area (small pores). The most widely used desiccants (qv) are siHca gel, activated alumina, and the aluminum rich zeoHtes (4A or 13X). The equiHbrium adsorption isotherms for moisture on these materials have characteristically different shapes (Fig. 3), making them suitable for different appHcations. [Pg.254]

Micropore Diffusion. In very small pores in which the pore diameter is not much greater than the molecular diameter the diffusing molecule never escapes from the force field of the pore wall. Under these conditions steric effects and the effects of nonuniformity in the potential field become dominant and the Knudsen mechanism no longer appHes. Diffusion occurs by an activated process involving jumps from site to site, just as in surface diffusion, and the diffusivity becomes strongly dependent on both temperature and concentration. [Pg.258]

Several wick stmctures are in common use. First is a fine-pore (0.14—0.25 mm (100-60 mesh) wire spacing) woven screen which is roUed into an annular stmcture consisting of one or more wraps inserted into the heat pipe bore. The mesh wick is a satisfactory compromise, in many cases, between cost and performance. Where high heat transfer in a given diameter is of paramount importance, a fine-pore screen is placed over longitudinal slots in the vessel wall. Such a composite stmcture provides low viscous drag for Hquid flow in the channels and a small pore size in the screen for maximum pumping pressure. [Pg.514]

The vapor pressure of a surface composed of a large number of very small pores, P, is influenced by the radius of the pores, as described by the Gibbs-Kelvin equation ... [Pg.255]

Important physical properties of catalysts include the particle size and shape, surface area, pore volume, pore size distribution, and strength to resist cmshing and abrasion. Measurements of catalyst physical properties (43) are routine and often automated. Pores with diameters <2.0 nm are called micropores those with diameters between 2.0 and 5.0 nm are called mesopores and those with diameters >5.0 nm are called macropores. Pore volumes and pore size distributions are measured by mercury penetration and by N2 adsorption. Mercury is forced into the pores under pressure entry into a pore is opposed by surface tension. For example, a pressure of about 71 MPa (700 atm) is required to fill a pore with a diameter of 10 nm. The amount of uptake as a function of pressure determines the pore size distribution of the larger pores (44). In complementary experiments, the sizes of the smallest pores (those 1 to 20 nm in diameter) are deterrnined by measurements characterizing desorption of N2 from the catalyst. The basis for the measurement is the capillary condensation that occurs in small pores at pressures less than the vapor pressure of the adsorbed nitrogen. The smaller the diameter of the pore, the greater the lowering of the vapor pressure of the Hquid in it. [Pg.171]

Another catalytically important zeohte is ZSM-5 (81). There is a three-dimensional network of pores in this zeohte, represented in Figure 16. A set of straight parallel pores is intersected by a set of perpendicular zigzag pores. These pores are smaller than those of the faujasites (Fig. 15). ZSM-5 is classified as a medium pore zeohte, the faujasites ate large pore zeohtes, and zeohte A (Table 2) is a small pore zeohte. [Pg.178]

R. P. W. Scott, Small Pore Liquid Chromatography Columns—Their Properties and Uses, Wiley-Interscience, John Wiley Sons, Inc., New York, 1984. [Pg.111]

An appHcation where latex paints show outstanding performance is over masonry such as stucco or ciader block constmction. This performance results from saponification resistance ia the preseace of the alkaH from the cement. Furthermore because masoary surfaces are porous, having both small and large pores, the low viscosity external phase of a latex paint can penetrate rapidly iato the small pores, causiag a rapid iacrease ia the viscosity of the remaining paiat. The bulk paiat, ia turn, sinks iato the larger holes more slowly than a solution-based paint. Thus less latex paint is required to cover the same surface area as compared to alkyd paints. [Pg.351]


See other pages where Small pores is mentioned: [Pg.2278]    [Pg.2702]    [Pg.2780]    [Pg.2780]    [Pg.2790]    [Pg.1]    [Pg.67]    [Pg.114]    [Pg.184]    [Pg.197]    [Pg.252]    [Pg.253]    [Pg.254]    [Pg.259]    [Pg.280]    [Pg.514]    [Pg.151]    [Pg.64]    [Pg.195]    [Pg.146]    [Pg.519]    [Pg.491]    [Pg.491]    [Pg.491]    [Pg.249]    [Pg.251]    [Pg.253]    [Pg.253]    [Pg.255]    [Pg.255]    [Pg.257]    [Pg.321]    [Pg.179]    [Pg.195]   
See also in sourсe #XX -- [ Pg.422 , Pg.423 ]




SEARCH



Aerocore Description Small Pore Area Material

Investigation on the Superior Hydrothermal Stability of Small-Pore Zeolite Supported Cu SCR Catalyst

Ions within small pores

Small molecule separation pore size distributions

Small pore theory

Small-pore packings

Small-pore zeohtes

Small-pore zeohtes oxidation

Small-pore zeolites

Small-pore zeolites dehydration

Small-pore zeolites oxidation

Zeolites small pore size

© 2024 chempedia.info