Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plants, esters

In a continuous model river test system it can be shown that after passage through a sewage treatment plant ester sulfonates have no significant influence on the qualitative and quantitative composition of the biocenosis of a receiving water [113]. All the investigations into the environmental fate of a-sulfo fatty acid esters demonstrate that aquatic toxicity is alleviated by their fast ultimate biodegradability, which allows them to be classified as environmentally compatible. [Pg.495]

VolatQe esters of aromatic carboxylic acids are often important components of plant floral scents, spices, fruits and vegetables. More than 1000 different compounds have been identified. In the flowers of plants, esters serve as signalling molecules, attractants, repellents and act in various defence mechanisms. [Pg.569]

In addition to their prevalence in plants, esters play biological roles in the animal kingdom. Section 12-17 included several examples of esters that function as insect pheromones. Perhaps the most bizarre of these esters is ( -7-dodecenyl acetate, a component of the pheromone mixture in several species of moths. This same compound was recently found to also be the mating pheromone of the elephant (who said nature has no sense of humor ). Section 20-5 will describe a number of more conventional biological functions of esters. [Pg.897]

H02C(CH2)2C02H. Colourless prisms m.p. 182 C, b.p. 235°C. Occurs in amber, algae, lichens, sugar cane, beets and other plants, and is formed during the fermentation of sugar, tartrates, malates and other substances by a variety of yeasts, moulds and bacteria. Manufactured by the catalytic reduction of maleic acid or by heating 1,2-dicyanoethane with acids or alkalis. Forms an anhydride when heated at 235°C. Forms both acid and neutral salts and esters. Used in the manufacture of succinic anhydride and of polyesters with polyols. [Pg.375]

Waxes are water repelling solids that are part of the protective coatings of a number of living things including the leaves of plants the fur of animals and the feathers of birds They are usually mixtures of esters m which both the alkyl and acyl group are unbranched and contain a dozen or more carbon atoms Beeswax for example contains the ester triacontyl hexadecanoate as one component of a complex mixture of hydrocar bons alcohols and esters... [Pg.1079]

Essential oils (Section 26 7) Pleasant smelling oils of plants consisting of mixtures of terpenes esters alcohols and other volatile organic substances Ester (Sections 4 1 and 20 1) Compound of the type... [Pg.1283]

Wax (Section 26 5) A mixture of water repellent substances that form a protective coating on the leaves of plants the fur of animals and the feathers of birds among other things A principal component of a wax is often an ester in which both the acyl portion and the alkyl portion are characterized by long carbon chains... [Pg.1296]

Acetic anhydtide is a mature commodity chemical ia the United States and its growth rate in the 1970s and 1980s was negative until 1988 when foreign demand neatly doubled the exports of 1986. This increase in exports was almost certainly attributable to the decline in the value of the U.S. doUar. Over four-fifths of all anhydtide production is utilized in cellulose acetate [9004-35-7] manufacture (see Cellulose esters). Many anhydtide plants are integrated with cellulose acetate production and thus employ the acetic acid pyrolysis route. About 1.25 kg acetic acid is pyrolyzed to produce 1.0 kg anhydtide. [Pg.79]

If a waste sulfuric acid regeneration plant is not available, eg, as part of a joint acrylate—methacrylate manufacturing complex, the preferred catalyst for esterification is a sulfonic acid type ion-exchange resin. In this case the residue from the ester reactor bleed stripper can be disposed of by combustion to recover energy value as steam. [Pg.154]

Acrolein, acrylamide, hydroxyalkyl acrylates, and other functional derivatives can be more hazardous from a health standpoint than acryhc acid and its simple alkyl esters. Furthermore, some derivatives, such as the alkyl 2-chloroacrylates, are powerful vesicants and can cause serious eye injuries. Thus, although the hazards of acryhc acid and the normal alkyl acrylates are moderate and they can be handled safely with ordinary care to industrial hygiene, this should not be assumed to be the case for compounds with chemically different functional groups (see Industrial hygiene Plant safety Toxicology). [Pg.157]

The first commercial production of fatty alcohol ia the 1930s employed the sodium reduction process usiug a methyl ester feedstock. The process was used ia plants constmcted up to about 1950, but it was expensive, hazardous, and complex. By about 1960 most of the sodium reduction plants had been replaced by those employing the catalytic hydrogenolysis process. Catalytic hydrogenation processes were investigated as early as the 1930s by a number of workers one of these is described ia reference 26. [Pg.446]

Secondary alcohols (C q—for surfactant iatermediates are produced by hydrolysis of secondary alkyl borate or boroxiae esters formed when paraffin hydrocarbons are air-oxidized ia the presence of boric acid [10043-35-3] (19,20). Union Carbide Corporation operated a plant ia the United States from 1964 until 1977. A plant built by Nippon Shokubai (Japan Catalytic Chemical) ia 1972 ia Kawasaki, Japan was expanded to 30,000 t/yr capacity ia 1980 (20). The process has been operated iadustriaHy ia the USSR siace 1959 (21). Also, predominantiy primary alcohols are produced ia large volumes ia the USSR by reduction of fatty acids, or their methyl esters, from permanganate-catalyzed air oxidation of paraffin hydrocarbons (22). The paraffin oxidation is carried out ia the temperature range 150—180°C at a paraffin conversion generally below 20% to a mixture of trialkyl borate, (RO)2B, and trialkyl boroxiae, (ROBO). Unconverted paraffin is separated from the product mixture by flash distillation. After hydrolysis of residual borate esters, the boric acid is recovered for recycle and the alcohols are purified by washing and distillation (19,20). [Pg.460]

The first successhil attempt to make textile fibers from plant cellulose can be traced to George Audemars (1). In 1855 he dissolved the nitrated form of cellulose in ether and alcohol and discovered that fibers were formed as the dope was drawn into the air. These soft strong nitrocellulose fibers could be woven into fabrics but had a serious drawback they were explosive, nitrated cellulose being the basis of gun-cotton (see Cellulose esters, inorganic esters). [Pg.344]

Fibers (see Fibers, survey) used in textile production can have a wide variety of origins plants, ie, ceUulosic fibers (see Fibers, cellulose esters) animals, ie, protein fibers (see Wool) and, in the twentieth century, synthetic polymers. Depending on the part of the plant, the ceUulosic fibers can be classified as seed fibers, eg, cotton (qv), kapok bast fibers, eg, linen from flax, hemp, jute and leaf fibers, eg, agave. Protein fibers include wool and hair fibers from a large variety of mammals, eg, sheep, goats, camels, rabbits, etc, and the cocoon material of insect larvae (sUk). Real sUk is derived from the cocoon of the silkworm, Bombjx mori and for a long time was only produced in China, from which it was traded widely as a highly valuable material. [Pg.423]

Off-Shoot-O. The methyl esters of the Cg—C 2 fatty acids (40) are collectively sold under the name Off-Shoot-O and are closely related to 1-decanol, the fatty alcohol sold to control axillary shoots in tobacco. The material is a contact-type chemical used to pinch ornamental plants such as a2aleas, cotoneaster, juniper Juniperus sp. privet, rhamnus, and taxus (Taxus sp. sp.). As a result of treatment the shmbs become bushier. The mode of action is by plasmolysis of the young, sensitive tissues. Therefore, appHcation timing may be critical. [Pg.426]

HydroxyethyUiydrazine (11) is a plant growth regulator. It is also used to make a coccidiostat, furazoHdone, and has been proposed, as has (14), as a stabilizer in the polymerization of acrylonitrile (72,73). With excess epoxide, polysubstitution occurs and polyol chains can form to give poly(hydroxyaLkyl) hydrazines which have been patented for the preparation of cellular polyurethanes (74) and as corrosion inhibitors for hydrauHc fluids (qv) (75). DialkyUiydrazines, R2NNH2, and alkylene oxides form the very reactive amineimines (15) which react further with esters to yield aminimides (16) ... [Pg.278]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

AIkyl-Ai,A/-diaLkyl-l-naphthalenecarboxamides are useful herbicides (86) and the 2,2-dimeth5lhydra2ide of 1-naphthalenecarboxyhc acid has been patented as a plant growth regulator (87). 2-Propynyl-2-naphthalenecarboxylate [53548-27-9] and similar esters are insecticides (88). 1-Naphthaleneacetic acid, the plant growth regulator, has been prepared from naphthalene, concentrated HCl, and paraformaldehyde without isolation of intermediate 1-chloromethylnaphthalene or l-naphthaleneacetonitnle (89). [Pg.503]

Economic Aspects. When trimellitic anhydride was introduced in semicommercial quantities in 1962, it was priced at 1.19/kg. The price was reduced to 0.55/kg as it became available in commercial quantities in 1968. The mid-1994 price was quoted as 2.31/kg from Amoco, fob, the JoHet, Illinois plant. A price history is given in Table 32. Although trimellitic anhydride production and sales figures are not available, the pubUshed U.S. Tariff Commission s production data for trimeUitate esters provides data for the trimellitic anhydride demand trend in the United States, since the largest single use of trimellitic anhydride is for the trimeUitate esters (115). These data are given in Table 32. [Pg.497]


See other pages where Plants, esters is mentioned: [Pg.220]    [Pg.1033]    [Pg.341]    [Pg.299]    [Pg.615]    [Pg.615]    [Pg.5]    [Pg.220]    [Pg.1033]    [Pg.341]    [Pg.299]    [Pg.615]    [Pg.615]    [Pg.5]    [Pg.83]    [Pg.164]    [Pg.217]    [Pg.259]    [Pg.377]    [Pg.400]    [Pg.247]    [Pg.412]    [Pg.440]    [Pg.449]    [Pg.450]    [Pg.437]    [Pg.425]    [Pg.427]    [Pg.208]    [Pg.270]    [Pg.279]    [Pg.385]    [Pg.296]    [Pg.273]    [Pg.419]    [Pg.161]   
See also in sourсe #XX -- [ Pg.484 ]




SEARCH



Plant glucose ester conjugates

Plant stand esters

Sterol esters plants

© 2024 chempedia.info