Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivity semiconductors

Bellec A, Ample F, Riedel D, Dujardin G, Joachim C (2009) Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor. Nano Lett 9 144... [Pg.264]

In the active state, the dissolution of metals proceeds through the anodic transfer of metal ions across the compact electric double layer at the interface between the bare metal and the aqueous solution. In the passive state, the formation of a thin passive oxide film causes the interfadal structure to change from a simple metal/solution interface to a three-phase structure composed of the metal/fUm interface, a thin film layer, and the film/solution interface [Sato, 1976, 1990]. The rate of metal dissolution in the passive state, then, is controlled by the transfer rate of metal ions across the film/solution interface (the dissolution rate of a passive semiconductor oxide film) this rate is a function of the potential across the film/solution interface. Since the potential across the film/solution interface is constant in the stationary state of the passive oxide film (in the state of band edge level pinning), the rate of the film dissolution is independent of the electrode potential in the range of potential of the passive state. In the transpassive state, however, the potential across the film/solution interface becomes dependent on the electrode potential (in the state of Fermi level pinning), and the dissolution of the thin transpassive film depends on the electrode potential as described in Sec. 11.4.2. [Pg.382]

N. Ma, G. Tikhomirov, S. O. Kelley, Nucleic Acid-Passivated Semiconductor Nanocrystals Biomolecular Templating of Form and Function. Accounts of... [Pg.222]

G. G. Roberts and coworkers deposited monolayers of diyne fatty adds on the surface of the narrow band gap semiconductor Hg Cdj Te, utilized in the fabrication of infrared detection devices. Admittance data determined after polymerization of the amphiphiles compared favourably with data obtained for equivalent devices with inorganic insulators. Hence, an application for passivating semiconductor surfaces seems feasible. [Pg.119]

Transmission Line Sections Discontinuities Impedance Transformers Terminations Attenuators Microwave Resonators Tuning Elements Hybrid Circuits and Directional Couplers Filters Ferrite Components Passive Semiconductor Devices... [Pg.309]

It should be mentioned that as well as for metals the passivation of semiconductors (particularly on Si, GaAs, InP) is also a subject of intense investigation. However, the goal is mostly not the suppression of corrosion but either the fonnation of a dielectric layer that can be exploited for devices (MIS stmctures) or the minimization of interface states (dangling bonds) on the semiconductor surface [63, 64]. [Pg.2724]

As outlined above, electron transfer through the passive film can also be cmcial for passivation and thus for the corrosion behaviour of a metal. Therefore, interest has grown in studies of the electronic properties of passive films. Many passive films are of a semiconductive nature [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 and 1031 and therefore can be investigated with teclmiques borrowed from semiconductor electrochemistry—most typically photoelectrochemistry and capacitance measurements of the Mott-Schottky type [104]. Generally it is found that many passive films cannot be described as ideal but rather as amorjDhous or highly defective semiconductors which often exlribit doping levels close to degeneracy [105]. [Pg.2726]

In most cases, CVD reactions are activated thermally, but in some cases, notably in exothermic chemical transport reactions, the substrate temperature is held below that of the feed material to obtain deposition. Other means of activation are available (7), eg, deposition at lower substrate temperatures is obtained by electric-discharge plasma activation. In some cases, unique materials are produced by plasma-assisted CVD (PACVD), such as amorphous siHcon from silane where 10—35 mol % hydrogen remains bonded in the soHd deposit. Except for the problem of large amounts of energy consumption in its formation, this material is of interest for thin-film solar cells. Passivating films of Si02 or Si02 Si N deposited by PACVD are of interest in the semiconductor industry (see Semiconductors). [Pg.44]

The excellence of a properly formed Si02—Si interface and the difficulty of passivating other semiconductor surfaces has been one of the most important factors in the development of the worldwide market for siUcon-based semiconductors. MOSFETs are typically produced on (100) siUcon surfaces. Fewer surface states appear at this Si—Si02 interface, which has the fewest broken bonds. A widely used model for the thermal oxidation of sihcon has been developed (31). Nevertheless, despite many years of extensive research, the Si—Si02 interface is not yet fully understood. [Pg.348]

For example, chloride and duoride ions, even in trace amounts (ppm), could cause the dissolution of aluminum metallization of complimentary metal oxide semiconductor (CMOS) devices. CMOS is likely to be the trend of VLSI technology and sodium chloride is a common contaminant. The protection of these devices from the effects of these mobile ions is an absolute requirement. The use of an ultrahigh purity encapsulant to encapsulate the passivated IC is the answer to some mobile ion contaminant problems. [Pg.188]

First, the designer should choose the type of rectification technology that is most appropriate for the application. The choice is whether to use passive rectification in which semiconductor rectifiers are used or synchronous recification in which power MOSFE B are placed in parallel with a smaller passive rectifier. Synchronous rectifiers are typically used in battery operated portable products where the added efficiency, usually an added two to eight percent, is important to extend the operating life of the battery or in applications where heat is important. In today s switching power supplies, passive rectifiers can dissipate 40 to 60 percent of the total losses within the power supply. Synchronous rectifiers affect only the conduction loss, which can be reduced by as much as 90 percent. [Pg.57]

Passivity of Metals and Semiconductors. (M. Froment, ed.) Elsevier, Amsterdam, 1983. [Pg.226]

Froment, M. (Ed.), Passivity of Metais and Semiconductors, Elsevier, Amsterdam, (1983)... [Pg.35]

Surface recombination processes of charge carriers are mechanisms that cannot easily be separated from real semiconductor interfaces. Only a few semiconductor surfaces can be passivated to such an extent as to permit suppression of surface recombination (e.g., Si with optimized oxide or nitride layers). A pronounced dip is typically seen between the potential-dependent PMC curve in the accumulation region and the photocurrent potential curve (e.g., Fig. 29). This dip may be partially caused by a surface... [Pg.490]

Another example of a cold-wall reactor is shown in Fig. 5.9. It uses a hot plate and a conveyor belt for continuous operation at atmospheric pressure. Preheating and cooling zones reduce the possibility of thermal shock. The system is used extensively for high-volume production of silicon-dioxide coatings for semiconductor passivation and interlayer dielectrics. [Pg.120]

Passivation layers, multilayer resist stacks, diffusion barriers, interlevel dielectrics, side-wall spacers, trench masks, oxidation masks, etc., in semiconductor devices. [Pg.283]

Passivation layers, surface dielectric, and doping barriers in semiconductor devices. [Pg.305]

A widely used glass is phosphosilicate (PSG), which is used extensively in semiconductor devices as a passivation and planarization coating for silicon wafers. It is deposited by CVD by the reaction of tetraethyl orthosilicate (TEOS) (C2H50)4Si, and trimethylphosphate PO(OCH3)3, in a molecular ratio corresponding to a concentration of 5 to 7% P. Deposition temperature is usually 700°C and pressure is 1 atm. [Pg.316]


See other pages where Passivity semiconductors is mentioned: [Pg.339]    [Pg.18]    [Pg.243]    [Pg.413]    [Pg.338]    [Pg.148]    [Pg.227]    [Pg.339]    [Pg.18]    [Pg.243]    [Pg.413]    [Pg.338]    [Pg.148]    [Pg.227]    [Pg.284]    [Pg.341]    [Pg.2414]    [Pg.2888]    [Pg.422]    [Pg.348]    [Pg.384]    [Pg.512]    [Pg.126]    [Pg.80]    [Pg.224]    [Pg.120]    [Pg.31]    [Pg.301]    [Pg.643]    [Pg.644]    [Pg.644]    [Pg.348]    [Pg.357]    [Pg.1087]    [Pg.489]    [Pg.74]    [Pg.123]   
See also in sourсe #XX -- [ Pg.402 ]

See also in sourсe #XX -- [ Pg.562 ]




SEARCH



Electronic properties, passive layers semiconductors

Semiconductor passivated

Semiconductor passivated

Semiconductor passivation

© 2024 chempedia.info