Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivity oxide film

The protective quality of the passive film is detennined by the ion transfer tlirough the film as well as the stability of the film with respect to dissolution. The dissolution of passive oxide films can occur either chemically or electrochemically. The latter case takes place if an oxidized or reduced component of the passive film is more soluble in the electrolyte than the original component. An example of this is the oxidative dissolution of CrjO ... [Pg.2724]

Niobium is used as a substrate for platinum in impressed-current cathodic protection anodes because of its high anodic breakdown potential (100 V in seawater), good mechanical properties, good electrical conductivity, and the formation of an adherent passive oxide film when it is anodized. Other uses for niobium metal are in vacuum tubes, high pressure sodium vapor lamps, and in the manufacture of catalysts. [Pg.26]

A critical issue is the stabiUty of the hydride electrode in the cell environment. A number of hydride formulations have been developed. Table 5 shows hydride materials that are now the focus of attention. Most of these are Misch metal hydrides containing additions of cobalt, aluminum, or manganese. The hydrides are prepared by making melts of the formulations and then grinding to fine powers. The electrodes are prepared by pasting and or pressing the powders into metal screens or felt. The additives are reported to retard the formation of passive oxide films on the hydrides. [Pg.562]

Impurities in a corrodent can be good or bad from a corrosion standpoint. An impurity in a stream may act as an inhibitor and actually retard corrosion. However, if this impurity is removed by some process change or improvement, a marked rise in corrosion rates can result. Other impurities, of course, can have very deleterious effec ts on materials. The chloride ion is a good example small amounts of chlorides in a process stream can break down the passive oxide film on stainless steels. The effects of impurities are varied and complex. One must be aware of what they are, how much is present, and where they come from before attempting to recommena a particular material of construction. [Pg.2422]

Figure 2-11 shows weight loss rate-potential curves for aluminum in neutral saline solution under cathodic protection [36,39]. Aluminum and its alloys are passive in neutral waters but can suffer pitting corrosion in the presence of chloride ions which can be prevented by cathodic protection [10, 40-42]. In alkaline media which arise by cathodic polarization according to Eq. (2-19), the passivating oxide films are soluble ... [Pg.57]

On the other hand, pit initiation which is the necessary precursor to propagation, is less well understood but is probably far more dependent on metallurgical structure. A detailed discussion of pit initiation is beyond the scope of this section. The two most widely accepted models are, however, as follows. Heine, etal. suggest that pit initiation on aluminium alloys occurs when chloride ions penetrate the passive oxide film by diffusion via lattice defects. McBee and Kruger indicate that this mechanism may also be applicable to pit initiation on iron. On the other hand, Evans has suggested that a pit initiates at a point on the surface where the rate of metal dissolution is momentarily high, with the result that more aggressive anions... [Pg.49]

The process of formation of a passivating oxide film is an anodic one the driving force for its formation is raised by raising the potential anodically... [Pg.121]

Formation of the first layer (a monolayer) of passivating oxide film on a denuded metal surface occurs very simply by the loss of protons from the adsorbed intermediate oxidation products, such intermediates being common to both dissolution and passivation processes . Thus for example, the first oxidative step in the anodic oxidation of nickel is the formation of the unstable adsorbed intermediate NiOH by... [Pg.127]

The corrosion rate of a metal, which depends for its protection on a passive oxide film, may be predicted from a simple empirical adsorption law (Freundlich) ... [Pg.408]

This work has been carried out by Marcus and his co-workersand deals with the influence of sulphur on the passivation of Ni-Fe alloys. For sulphur-containing Ni-Fe alloys, sulphur segregates on the surface during anodic dissolution. Above a critical sulphur content a non-protective thin sulphide film is formed on the surface instead of the passive oxide film. [Pg.583]

Niobium like tantalum relies for its corrosion resistance on a highly adherent passive oxide film it is however not as resistant as tantalum in the more aggressive media. In no case reported in the literature is niobium inert to corrosives that attack tantalum. Niobium has not therefore been used extensively for corrosion resistant applications and little information is available on its performance in service conditions. It is more susceptible than tantalum to embrittlement by hydrogen and to corrosion by many aqueous corrodants. Although it is possible to prevent hydrogen embrittlement of niobium under some conditions by contacting it with platinum the method does not seem to be broadly effective. Niobium is attacked at room temperature by hydrofluoric acid and at 100°C by concentrated hydrochloric, sulphuric and phosphoric acids. It is embrittled by sodium hydroxide presumably as the result of hydrogen absorption and it is not suited for use with sodium sulphide. [Pg.854]

Electroplating passive alloys Another application of strike baths reverses the case illustrated in the previous example. The strike is used to promote a small amount of cathode corrosion. When the passivation potential of a substrate lies below the cathode potential of a plating bath, deposition occurs onto the passive oxide film, and the coating is non-adherent. Stainless steel plated with nickel in normal baths retains its passive film and the coating is easily peeled off. A special strike bath is used with a low concentration of nickel and a high current density, so that diffusion polarisation (transport overpotential) depresses the potential into the active region. The bath has a much lower pH than normal. The low pH raises the substrate passivation potential E pa, which theoretically follows a relation... [Pg.353]

Oxidising or non-oxidising inhibitors These are characterised by their ability to passivate the metal. In general, non-oxidising inhibitors require the presence of dissolved oxygen in the liquid phase for the maintenance of the passive oxide film, whereas dissolved oxygen is not necessary with oxidising inhibitors. [Pg.777]

Thus inhibitive anions can retard the dissolution of both the T-FejO, and the magnetite layers of the passivating oxide layer on iron. This has the dual effect of preventing breakdown of an existing oxide film and also of facilitating the formation of a passivating oxide film on an active iron surface, as discussed in the previous section. [Pg.820]

Reduction of the dissolution rate of the passivating oxide film. [Pg.823]

Passivation is a necessary and natural initial corrosion process that occurs on all hot waterside surfaces. It is the conversion of a reactive metal surface into a lower energy state that does not readily further react or corrode, and it involves the development of a passive oxide film on a clean surface. [Pg.170]


See other pages where Passivity oxide film is mentioned: [Pg.2725]    [Pg.433]    [Pg.5]    [Pg.2423]    [Pg.55]    [Pg.34]    [Pg.118]    [Pg.119]    [Pg.120]    [Pg.122]    [Pg.122]    [Pg.123]    [Pg.124]    [Pg.126]    [Pg.126]    [Pg.129]    [Pg.131]    [Pg.132]    [Pg.133]    [Pg.138]    [Pg.141]    [Pg.142]    [Pg.142]    [Pg.859]    [Pg.1307]    [Pg.815]    [Pg.823]    [Pg.825]    [Pg.913]    [Pg.25]    [Pg.55]    [Pg.10]   
See also in sourсe #XX -- [ Pg.92 , Pg.96 , Pg.102 ]




SEARCH



Anodic oxides passive films

Chromium, passive oxide films

Films, oxide passive, oxidizing properties

Hydrated passive film, iron oxide

Iron oxides passive film layer

Outer Hydrous Layer on the Passive Oxide Film

Oxidation films

Oxide films continued passive

Passivating films

Passivating oxide

Passivation films

Passive Oxide Film on Iron

Passive films

Passive oxidation

Passive oxide film

Passivity oxide-film theory

Passivity passive films

Stainless passive surface oxide film

Surfaces passive oxide films

© 2024 chempedia.info