Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductor rectifying

First, the designer should choose the type of rectification technology that is most appropriate for the application. The choice is whether to use passive rectification in which semiconductor rectifiers are used or synchronous recification in which power MOSFE B are placed in parallel with a smaller passive rectifier. Synchronous rectifiers are typically used in battery operated portable products where the added efficiency, usually an added two to eight percent, is important to extend the operating life of the battery or in applications where heat is important. In today s switching power supplies, passive rectifiers can dissipate 40 to 60 percent of the total losses within the power supply. Synchronous rectifiers affect only the conduction loss, which can be reduced by as much as 90 percent. [Pg.57]

Solid-State DC Drives. The controlled-thyristor rectifier and separate-field DC motor is the solid-state motor drive in greatest use. The combination provides control over at least a 10 1 speed range, plus an additional two to three times by field weakening. Depending upon the power level, the rectifier is operated directly from the AC supply lines, or via a transformer. Typical speed regulation of 2% can be accomplished with a single control system. The horsepower and speed limitations are set by the DC motor, not by the semiconductor rectifiers. The DC motor and rectifier can be combined to any required power level. [Pg.419]

Fig. 2.20 Current-voltage characteristic for a metal-semiconductor rectifying junction. Fig. 2.20 Current-voltage characteristic for a metal-semiconductor rectifying junction.
Transistors and semiconductor rectifiers can have an operating frequency range in the microwave region. Their efficiency can be as high as 25% to 30%. [Pg.597]

Semiconductor rectifiers contain at least two separate materials, a P-type and an N-type silicon semiconductor, joined together and held by conductors. With an alternating voltage across this combination, normally called a silicon diode, the electrons in the N-layer and the holes in the P-layer respond by moving in opposite directions. Figure 8.6 shows that during one half of the voltage cycle, the electrons and holes move toward the junction, and current flows. In the other half of the cycle, the electrons and holes move away from the junction, and current flow is impossible. [Pg.717]

Type 2 protection. When Type 2 protected, the equipment is not damaged during a fault/short circuit, and the equipment is protected by semiconductor, rectifier, and in some instances RK-1 fuses. Note that the semiconductor and rectifier fuses do not qnahfy as Underwriters Laboratories (UL) or NEC branch-circuit protection devices. However, occasionally a control manufacturer will use SCRs that can be protected by RK-1 fuses. Consult the manufacturer to be certain. [Pg.667]

A structural correlation of the AR rectifier to a normal silicon junction diode shows that, acceptor part of the molecule can be mimicked with p-type semiconductor, donor part can be mimicked with n-type semiconductor and o-bond can mimic the pn-j unction barrier. With these favorable structural features of an organic molecule, it can be expected to result in similar characteristics like that of a semiconductor rectifier. [Pg.102]

The history of semiconductor devices can be traced back to tire paper of Braun, published in 1874, describing rectifying behavior of a contact [1], However, for many years semiconductors were considered too difficult a subject and tire science of semiconductors began only during World War IT... [Pg.2876]

Selenium exhibits both photovoltaic action, where light is converted directly into electricity, and photoconductive action, where the electrical resistance decreases with increased illumination. These properties make selenium useful in the production of photocells and exposure meters for photographic use, as well as solar cells. Selenium is also able to convert a.c. electricity to d.c., and is extensively used in rectifiers. Below its melting point selenium is a p-type semiconductor and is finding many uses in electronic and solid-state applications. [Pg.96]

Metals for Schottl Contacts. Good Schottky contacts on semiconductor surfaces should not have any interaction with the semiconductor as is common in ohmic contacts. Schottky contacts have clean, abmpt metal—semiconductor interfaces that present rectifying contacts to electron or hole conduction. Schottky contacts are usuaHy not intentionaHy annealed, although in some circumstances the contacts need to be able to withstand high temperature processing and maintain good Schottky behavior. [Pg.383]

The cadmium chalcogenide semiconductors (qv) have found numerous appHcations ranging from rectifiers to photoconductive detectors in smoke alarms. Many Cd compounds, eg, sulfide, tungstate, selenide, teUuride, and oxide, are used as phosphors in luminescent screens and scintiUation counters. Glass colored with cadmium sulfoselenides is used as a color filter in spectroscopy and has recently attracted attention as a third-order, nonlinear optical switching material (see Nonlinear optical materials). DiaLkylcadmium compounds are polymerization catalysts for production of poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVA), and poly(methyl methacrylate) (PMMA). Mixed with TiCl, they catalyze the polymerization of ethylene and propylene. [Pg.392]

Considerable interest in the sohd-state physics of sihcon carbide, that is, the relation between its semiconductor characteristics and crystal growth, has resulted from the expectation that SiC would be useflil as a high temperature-resistant semiconductor in devices such as point-contact diodes (148), rectifiers (149), and transistors (150,151) for use at temperatures above those where sihcon or germanium metals fail (see Semiconductors). [Pg.468]

For a large number of applications involving ceramic materials, electrical conduction behavior is dorninant. In certain oxides, borides (see Boron compounds), nitrides (qv), and carbides (qv), metallic or fast ionic conduction may occur, making these materials useful in thick-film pastes, in fuel cell apphcations (see Fuel cells), or as electrodes for use over a wide temperature range. Superconductivity is also found in special ceramic oxides, and these materials are undergoing intensive research. Other classes of ceramic materials may behave as semiconductors (qv). These materials are used in many specialized apphcations including resistance heating elements and in devices such as rectifiers, photocells, varistors, and thermistors. [Pg.349]

If the temperature range of interest is large, say 1 to 400 K, then diode thermometers are recommended. Diodes have other advantages compared to resistance thermometers. By contrast, diode thermometers are veiy much smaller and faster. Bv selection of diodes all from the same melt, they may be made interchangeable. That is, one diode has the same cahbration cui ve as another, which is not always the case with either semiconductor or metallic-resistance thermometers. It is well known, however, that diode thermometers may rectify an ac field, and thus may impose a dc noise on the diode output. Adequate shielding is required. [Pg.1136]

NoU It is possible that at some loealioiis there is no a.e. source available, such as (or battery-operated lifts iirul motor vehicles,. Such applications may also call for a variable d.e. source. When it is so. it can be achieved with the use of a chopper circuit which uses the conventional semiconductor devices. The devices are switched at high repetitive frequencies to obtain the required variation in the output voltage as with the use of a phase-controlled lliyristor rectifier, A typical chopper circuit is shown in Ingure 6.2, i. using diodes and a controlled unidirectional semieonduetor switch, which can be a thyristor or tin IGBT. [Pg.119]

The exciter is an AC generator with a stator-mounted field. Direct cur rent for the exciter field is provided from an external source, typically u small variable voltage rectifier mounted at the motor starter. Exciter oui put is converted to DC through a three-phase, full-wave, silicon-diode bridge rectifier. Thyristors (silicon-controlled rectifiers) switch the cur rent to the motor field and the motor-starting, field-discharge resistors These semiconductor elements are mounted on heat sinks and assembled on a drum bolted to the rotor or shaft. [Pg.266]

Nonstoichiometric oxide phases are of great importance in semiconductor devices, in heterogeneous catalysis and in understanding photoelectric, thermoelectric, magnetic and diffusional properties of solids. They have been used in thermistors, photoelectric cells, rectifiers, transistors, phosphors, luminescent materials and computer components (ferrites, etc.). They are cmcially implicated in reactions at electrode surfaces, the performance of batteries, the tarnishing and corrosion of metals, and many other reactions of significance in catalysis. ... [Pg.644]

In a light-emitting MSM structure the two metal electrodes selected such that the work functions of the electrodes are near the edge of the valence band (VB) and the conducting band (CB) of the semiconductor, respectively, so that oppositely charge carriers are injected from the opposite electrodes. An ohmic and a rectifying contact is therefore formed in the MSM structure (see Fig. 9-22). [Pg.155]

Contacts are the elementary building blocks for all electronic devices. These include interfaces between semiconductors of different doping type (homojunctions) or of different composition (heterojunctions), and junctions between a metal and a semiconductor, which can be either rectifying (Schotlky junction) or ohmic. Because of their primary importance, the physics of semiconductor junctions is largely dealt with in numerous textbooks [11, 12]. We shall concentrate here on basic aspects of the metal-semiconductor (MS) and, above all, metal-insulator-semiconductor (MIS) junctions, which arc involved in the oiganic field-effect transistors. [Pg.245]

A semiconductor can be described as a material with a Fermi energy, which typically is located within the energy gap region at any temperature. If a semiconductor is brought into electrical contact with a metal, either an ohmic or a rectifying Schouky contact is formed at the interface. The nature of the contact is determined by the workfunction, (the energetic difference between the Fermi level and the vacuum level), of the semiconductor relative to the mclal (if interface effects are neglected - see below) 47J. [Pg.469]

Eq. (14.1) is known as the Mott-Schotlky equation. We note llial for a given n-lype semiconductor, the harrier height increases as the work function of the metal increases. It is therefore expected that high work function metals will give a rectifying junction, and low work function metals an ohmic contact (it is the reverse for a p-type semiconductor). [Pg.557]


See other pages where Semiconductor rectifying is mentioned: [Pg.2487]    [Pg.515]    [Pg.2242]    [Pg.2491]    [Pg.520]    [Pg.75]    [Pg.136]    [Pg.318]    [Pg.136]    [Pg.751]    [Pg.390]    [Pg.2487]    [Pg.515]    [Pg.2242]    [Pg.2491]    [Pg.520]    [Pg.75]    [Pg.136]    [Pg.318]    [Pg.136]    [Pg.751]    [Pg.390]    [Pg.401]    [Pg.126]    [Pg.525]    [Pg.350]    [Pg.350]    [Pg.350]    [Pg.379]    [Pg.396]    [Pg.69]    [Pg.230]    [Pg.135]    [Pg.334]    [Pg.749]    [Pg.155]    [Pg.593]    [Pg.598]   
See also in sourсe #XX -- [ Pg.558 , Pg.560 ]




SEARCH



Rectifier, semiconductor junction

Rectifier/transformer semiconductor rectifiers

Rectifiers semiconductor devices

Semiconductor-controlled rectifiers

© 2024 chempedia.info