Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oil fractions

This method is applicable for mineral oil fractions whose molecular weight is between 290 and 500 and for < 60% and 40% < Cp< 70%. The analysis is fast, approximately 10 minutes, and the correlation with other methods is satisfactory. [Pg.61]

Liquid products must undergo hydrogen processing before joining equivalent crude oil fractions and continuing the normal process property improvement steps. [Pg.380]

In a first phase, the diagram for processing oil fractions features the addition of complementary units that enable the production of unleaded gasoline such as ... [Pg.408]

Burdett, R.A., L.W. Taylor and L.C. Jones Jr (1955), Determination of aromatic hydrocarbons in lubricating oil fractions by far UV absorption spectroscopy , p. 30. In Molecular Spectroscopy Report Conf. Institute of Petroleum, London. [Pg.454]

Olefins are produced primarily by thermal cracking of a hydrocarbon feedstock which takes place at low residence time in the presence of steam in the tubes of a furnace. In the United States, natural gas Hquids derived from natural gas processing, primarily ethane [74-84-0] and propane [74-98-6] have been the dominant feedstock for olefins plants, accounting for about 50 to 70% of ethylene production. Most of the remainder has been based on cracking naphtha or gas oil hydrocarbon streams which are derived from cmde oil. Naphtha is a hydrocarbon fraction boiling between 40 and 170°C, whereas the gas oil fraction bods between about 310 and 490°C. These feedstocks, which have been used primarily by producers with refinery affiliations, account for most of the remainder of olefins production. In addition a substantial amount of propylene and a small amount of ethylene ate recovered from waste gases produced in petroleum refineries. [Pg.171]

Gas oil fractions (204—565°C) from coal Hquefaction show even greater differences in composition compared to petroleum-derived counterparts than do the naphtha fractions (128). The coal-gas oils consist mostly of aromatics (60%), polar heteroaromatics (25%), asphaltenes (8—15%), and saturated... [Pg.91]

Thermia. Oil C. Thermia Oil C, Shell Oil Co., is a selected mineral-oil fraction containing appropriate antioxidants. [Pg.504]

The feedstocks used ia the production of petroleum resias are obtaiaed mainly from the low pressure vapor-phase cracking (steam cracking) and subsequent fractionation of petroleum distillates ranging from light naphthas to gas oil fractions, which typically boil ia the 20—450°C range (16). Obtaiaed from this process are feedstreams composed of atiphatic, aromatic, and cycloatiphatic olefins and diolefins, which are subsequently polymerized to yield resias of various compositioas and physical properties. Typically, feedstocks are divided iato atiphatic, cycloatiphatic, and aromatic streams. Table 2 illustrates the predominant olefinic hydrocarbons obtained from steam cracking processes for petroleum resia synthesis (18). [Pg.352]

Lubricants. Petroleum lubricants continue to be the mainstay for automotive, industrial, and process lubricants. Synthetic oils are used extensively in industry and for jet engines they, of course, are made from hydrocarbons. Since the viscosity index (a measure of the viscosity behavior of a lubricant with change in temperature) of lube oil fractions from different cmdes may vary from +140 to as low as —300, additional refining steps are needed. To improve the viscosity index (VI), lube oil fractions are subjected to solvent extraction, solvent dewaxing, solvent deasphalting, and hydrogenation. Furthermore, automotive lube oils typically contain about 12—14% additives. These additives maybe oxidation inhibitors to prevent formation of gum and varnish, corrosion inhibitors, or detergent dispersants, and viscosity index improvers. The United States consumption of lubricants is shown in Table 7. [Pg.367]

The bottoms, consisting of absorption oil, absorbed propane, and higher boiling hydrocarbons, are fed to the lean-oil fractionator. The LPG and the natural gas Hquids are removed as the overhead product from the absorption oil which is removed as a ketde-bottom product. [Pg.183]

The lean oil from the lean-oil fractionator passes through several heat exchangers and then through a refrigerator where the temperature is lowered to —37° C. Part of the lean oil is used as a reflux to the lower section of the rich-oil deethanizer. Most of the lean oil is presaturated ia the top section of the deethanizer, is cooled again to —37° C, and is returned to the top of the absorber, thus completing the oil cycle. [Pg.183]

The overhead product from the lean-oil fractionator, consisting of propane and heavier hydrocarbons, enters the depropanizer. The depropanizer overhead product is treated to remove sulfur and water to provide specification propane. The depropanizer bottoms, containing butane and higher boiling hydrocarbons, enters the debutanizer. Natural gasoHne is produced as a bottom product from the debutanizer. The debutanizer overhead product is mixed butanes, which are treated for removal of sulfur and water, then fed iato the butane spHtter. Isobutane is produced as an overhead product from the spHtter and / -butane is produced as a bottoms product. [Pg.183]

The coal tar first is processed through a tar-distillation step where ca the first 20 wt % of distillate, ie, chemical oil, is removed. The chemical oil, which contains practically all the naphthalene present in the tar, is reserved for further processing, and the remainder of the tar is distilled further to remove additional creosote oil fractions until a coal-tar pitch of desirable consistency and properties is obtained. [Pg.484]

Naphthenic acids occur ia a wide boiling range of cmde oil fractions, with acid content increa sing with boiling point to a maximum ia the gas oil fraction (ca 325°C). Jet fuel, kerosene, and diesel fractions are the source of most commercial naphthenic acid. The acid number of the naphthenic acids decreases as heavier petroleum fractions are isolated, ranging from 255 mg KOH/g for acids recovered from kerosene and 170 from diesel, to 108 from heavy fuel oil (19). The amount of unsaturation as indicated by iodine number also increases in the high molecular weight acids recovered from heavier distillation cuts. [Pg.510]

The cracked products leave as overhead materials, and coke deposits form on the inner surface of the dmm. To provide continuous operation, two dmms are used while one dmm is on-stream, the one off-stream is being cleaned, steamed, water-cooled, and decoked in the same time interval. The temperature in the coke dmm is in the range of 415—450°C with pressures in the range of 103—621 kPa (15—90 psi). Overhead products go to the fractionator, where naphtha and heating oil fractions are recovered. The nonvolatile material is combined with preheated fresh feed and returned to the furnace. The coke dmm is usually on stream for about 24 hours before becoming filled with porous coke, after which the coke is removed hydraulically. [Pg.204]

Fractionation. Kett-McGee developed the ROSE process for separating the heavy components of cmde oil, eg, asphaltenes, resins, and oils, in the 1950s. This process was commercialized in the late 1970s, when cmde oil and utility costs were no longer inexpensive. In the ROSE process (Fig. 11), residuum and pentane ate mixed and the soluble resins and oils recovered in the supetctitical phase. By stepwise isobatic temperature increases, which decrease solvent density, the resin and oil fractions ate precipitated sequentially. [Pg.227]

The simplest unit employing vacuum fractionation is that designed by Canadian Badger for Dominion Tar and Chemical Company (now Rttgers VFT Inc.) at Hamilton, Ontario (13). In this plant, the tar is dehydrated in the usual manner by heat exchange and injection into a dehydrator. The dry tar is then heated under pressure in an oil-fired hehcal-tube heater and injected directly into the vacuum fractionating column from which a benzole fraction, overhead fraction, various oil fractions as side streams, and a pitch base product are taken. Some alterations were made to the plant in 1991, which allows some pitch properties to be controlled because pitch is the only product the distillate oils are used as fuel. [Pg.336]

The only valuable components in low temperature tar are the phenols and an oil fraction distilled over the range of 180—310°C, which is collected for tar-acid recovery is taken. A typical primary distillation is given in Table 3. [Pg.339]

Carbolic Oils and Tow Temperature Tar Middle Oil, TarMcids. The fractions of some coke-oven tars, distilling in the range of 180—240°C, and the middle oil fraction (180—310°C) from low temperature tars are treated for the recovery of tar acids (19). [Pg.339]

Mutation. For industrial appHcations, mutations are induced by x-rays, uv irradiation or chemicals (iiitrosoguanidine, EMS, MMS, etc). Mutant selections based on amino acid or nucleotide base analogue resistance or treatment with Nystatin or 2-deoxyglucose to select auxotrophs or temperature-sensitive mutations are easily carried out. Examples of useful mutants are strains of Candida membranefaciens, which produce L-threonine Hansenu/a anomala, which produces tryptophan or strains of Candida lipolytica that produce citric acid. An auxotrophic mutant of S. cerevisiae that requires leucine for growth has been produced for use in wine fermentations (see also Wine). This yeast produces only minimal quantities of isoamyl alcohol, a fusel oil fraction derived from leucine by the Ehrlich reaction (10,11). A mutant strain of bakers yeast with cold-sensitive metaboHsm shows increased stabiUty and has been marketed in Japan for use in doughs stored in the refrigerator (12). [Pg.387]

Cmde oil containing about 30% asphalt can be refined completely in an atmospheric unit to an asphalt product. However, most cmde oil cannot be distilled satisfactorily to an asphalt product at atmospheric pressure because of the presence of substantial proportions of high boiling gas oil fractions. Thus, as a supplement to the atmospheric process, a second fractionating tower (a vacuum tower) is added (Fig. 1). [Pg.362]

Japan, one in New Zealand, and at least one in Russia. Worldwide cmde tall oil fractionating capacity in 1988 was estimated at slightly over 1.4 million ... [Pg.98]

Residuum oil supercritical extraction-petroleum deasphalting Polymer fractionation Edible oils fractionation Analytical SGF extraction and chromatography Reactive separations... [Pg.2000]

Dimethylpyridine has been isolated from the basic fraction of coal tar and also from the bone oil fraction distilling at 139-142°. It has also been prepared from ethyl aceto-pyruvate and ethyl /S-aminocrotonate. ... [Pg.33]

The illustrated unit can be used to study vapor-phase reforming of kerosene fractions to high octane gasoline, or hydrogenation of benzene, neat or in gasoline mixtures to cyclohexane and methylcyclopentane. In liquid phase experiments hydrotreating of distillate fractions can be studied. The so-called Solvent Methanol Process was studied in the liquid phase, where the liquid feed was a solvent only, a white oil fraction. [Pg.89]


See other pages where Oil fractions is mentioned: [Pg.47]    [Pg.196]    [Pg.209]    [Pg.361]    [Pg.406]    [Pg.407]    [Pg.80]    [Pg.117]    [Pg.175]    [Pg.571]    [Pg.184]    [Pg.184]    [Pg.184]    [Pg.237]    [Pg.336]    [Pg.336]    [Pg.338]    [Pg.339]    [Pg.341]    [Pg.368]    [Pg.369]    [Pg.366]    [Pg.371]    [Pg.386]    [Pg.2518]    [Pg.267]   
See also in sourсe #XX -- [ Pg.379 ]




SEARCH



Analysis of aromatic mineral oil fractions

Boiling oil fractions

Characterization of Crude Oils and Petroleum Fractions Based on Structural Analysis

Characterization of oil fractions

Crude oil distillation fraction

Crude oil fractionation

Crude oil fractions

Determination of Maximum Packing Fraction (Pf) by Oil Absorption Procedures

Diesel oil fractionation

Distillation oil fractions

Edible oil fractionation

Flow oil fractions

Fluid inclusion oils fractionation

Fraction of oil

Fractional Distillation of the Hexane Extract (92 THC Oil)

Fractional distillation of oil

Fractionated coconut oil

Fractionating of oil

Fractionation frying oils

Fractionation of mineral oils

Fractionation of oil

Fractionation of pyrolysis oils

Fractionation of shale oil

Fractionation palm oil

Fractionation vegetable oils

Fractions in oil

Fractions of crude oil

Gas oil fraction

Heat oil fractions

Hydrotreating of oil fractions

In lubricating oil fractions

Lube oil fractions

Lubricating oil fractions

Nonpolar fraction of shale oil

Original ring analysis of saturated mineral oil fractions

Palm oil mid fraction

Physical constants of mineral oil fractions

Ring analysis of saturated mineral oil fractions

Sawdust pyrolysis oils, fractionation

Shale oil fractionation

Shale oil fractions

Soybean oil fractionation

Structural bulk analysis of heavy crude oil fractions n-d-M method

Surface tension of mineral oil fractions

Vacuum-pyrolysis oils fraction

Vacuum-pyrolysis oils fractionation

Water-in-oil fractional factorial designs

© 2024 chempedia.info