Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylates, fluorinated

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

Many synthetic latices exist (7,8) (see Elastomers, synthetic). They contain butadiene and styrene copolymers (elastomeric), styrene—butadiene copolymers (resinous), butadiene and acrylonitrile copolymers, butadiene with styrene and acrylonitrile, chloroprene copolymers, methacrylate and acrylate ester copolymers, vinyl acetate copolymers, vinyl and vinyUdene chloride copolymers, ethylene copolymers, fluorinated copolymers, acrylamide copolymers, styrene—acrolein copolymers, and pyrrole and pyrrole copolymers. Many of these latices also have carboxylated versions. [Pg.23]

A variety of ionomers have been described in the research literature, including copolymers of a) styrene with acrylic acid, b) ethyl acrylate with methacrylic acid, and (c) ethylene with methacrylic acid. A relatively recent development has been that of fluorinated sulfonate ionomers known as Nafions, a trade name of the Du Pont company. These ionomers have the general structure illustrated (10.1) and are used commercially as membranes. These ionomers are made by copolymerisation of the hydrocarbon or fluorocarbon monomers with minor amounts of the appropriate acid or ester. Copolymerisation is followed by either neutralisation or hydrolysis with a base, a process that may be carried out either in solution or in the melt. [Pg.149]

Polymers with a sizable number of ionic groups and a relatively nonpolar backbone are known as ionomers. The term was first used for copolymers of ethylene with carboxylated monomers (such as methacrylic acid) present as salts, and cross-linked thermoreversibly by divalent metal ions. Such polymers are useful as transparent packaging and coating materials. Their fluorinated forms have been made into very interesting ion-exchange membranes (considered further below). [Pg.450]

Various polymeric materials were tested statically with both gaseous and liquefied mixtures of fluorine and oxygen containing from 50 to 100% of the former. The materials which burned or reacted violently were phenol-formaldehyde resins (Bakelite) polyacrylonitrile-butadiene (Buna N) polyamides (Nylon) polychloroprene (Neoprene) polyethylene polytriflu-oropropylmethylsiloxane (LS63) polyvinyl chloride-vinyl acetate (Tygan) polyvinylidene fluoride-hexafluoropropylene (Viton) polyurethane foam. Under dynamic conditions of flow and pressure, the more resistant materials which binned were chlorinated polyethylenes, polymethyl methacrylate (Perspex) polytetraflu-oroethylene (Teflon). [Pg.1519]

Four new fluorinated acrylic or methacrylic monomers were readily accessible using the commercially available HFAF as a means of introducing 6F groups into the monomers. Its reaction with acryloyl or metacryloyl chloride, as shown in Figure 1.1, gave the new monomers I. [Pg.22]

By reacting first with ethyl bromoacetate, a fluorinated carboxylic acid (III) resulted, which was then converted into the acid chloride (IV) and subsequently reacted with hydroxyethyl methacrylate or hydroxypropyl methacrylate giving rise to the monomers V, as shown in Figure 1.2. All these monomers are clear, colorless liquids, and were characterized by NMR and FTIR spectra and elemental analyses. [Pg.22]

Very recently we8 reported on a class of processable heavily fluorinated acrylic resins that exhibit dielectric constants as low as 2.10, very close to the minimum known values. In this chapter we report on the preparation of a series of processable heavily fluorinated acrylic and methacrylic homo- and copolymers that exhibit dielectric constants as low as 2.06, and the factors that affect the reduction of dielectric constant from structure-property relationships is elucidated.9... [Pg.169]

The preparation of fluorinated alcohols was carried out in multistep routes according to the reported procedures.1012 The synthesis of acrylic and methacrylic esters as shown in Table 11.1 was carried out in a fluorocarbon solvent such as Freon 113 by the reaction of the respective fluorinated alcohol with acryloyl chloride or methacryloyl chloride and an amine acid acceptor such as triethyla-mine with examples shown in Scheme 1. Other attempts to esterify the fluoroalcohols directly with acrylic acid or acrylic anhydride were not successful.11 Product purification by distillation was not feasible because of the temperature required, but purification by percolation of fluorocarbon solutions through neutral alumina resulted in products of good purity identified by TLC, FTIR, and H-, 13C-, and 19F- FTNMRs. [Pg.172]

In this work we have demonstrated that a new class of heavily fluorinated acrylic and methacrylic resins can be efficiently synthesized and then cured to solid form with radical initiator at elevated temperatures. These cured resins were found to have low dielectric constants, which are close to the minimum known values for Teflon and Teflon AF. In contrast to tetrafluoroethylene, our monomers are processable owing to the fact that they are liquids or low-melting solids, and moreover are soluble in common organic solvents. Lower dielectric constants are obtained as fluorine contents on the polymer backbone or side chain increase, when acrylate is replaced by methacrylate, when ether linkages are present in the fluorocarbon, and when aromatic structure is symmetrically meta-substituted. [Pg.179]

Polymers such as polystyrene, poly(vinyl chloride), and poly(methyl methacrylate) show very poor crystallization tendencies. Loss of structural simplicity (compared to polyethylene) results in a marked decrease in the tendency toward crystallization. Fluorocarbon polymers such as poly(vinyl fluoride), poly(vinylidene fluoride), and polytetrafluoroethylene are exceptions. These polymers show considerable crystallinity since the small size of fluorine does not preclude packing into a crystal lattice. Crystallization is also aided by the high secondary attractive forces. High secondary attractive forces coupled with symmetry account for the presence of significant crystallinity in poly(vinylidene chloride). Symmetry alone without significant polarity, as in polyisobutylene, is insufficient for the development of crystallinity. (The effect of stereoregularity of polymer structure on crystallinity is postponed to Sec. 8-2a.)... [Pg.28]

Emulsion polymerization was first employed during World War II for producing synthetic rubbers from 1,3-butadiene and styrene. This was the start of the synthetic rubber industry in the United States. It was a dramatic development because the Japanese naval forces threatened access to the southeast Asian natural-rubber (NR) sources, which were necessary for the war effort. Synthetic mbber has advanced significantly from the first days of balloon tires, which had a useful life of 5000 mi to present-day tires, which are good for 40,000 mi or more. Emulsion polymerization is presently the predominant process for the commercial polymerizations of vinyl acetate, chloroprene, various acrylate copolymerizations, and copolymerizations of butadiene with styrene and acrylonitrile. It is also used for methacrylates, vinyl chloride, acrylamide, and some fluorinated ethylenes. [Pg.350]

Polymerization. Since fluorinated products are SCCO2 -philic, CO2 can be used as a substitute for CFC solvents in the production of fluoropolymers.5-7,38,39 Selection of fluorosurfactants has enabled polymerization of SCCO2-phobic polymers such as polymethyl methacrylate. " "" ... [Pg.40]


See other pages where Methacrylates, fluorinated is mentioned: [Pg.296]    [Pg.296]    [Pg.72]    [Pg.105]    [Pg.364]    [Pg.449]    [Pg.9]    [Pg.799]    [Pg.278]    [Pg.290]    [Pg.223]    [Pg.108]    [Pg.111]    [Pg.112]    [Pg.56]    [Pg.21]    [Pg.21]    [Pg.194]    [Pg.10]    [Pg.57]    [Pg.671]    [Pg.143]    [Pg.210]    [Pg.210]    [Pg.196]    [Pg.157]    [Pg.7]    [Pg.7]    [Pg.194]    [Pg.404]    [Pg.88]    [Pg.619]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



© 2024 chempedia.info