Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Three dimensional network

In many protein gels, including those of gelatin, fibrin, and denatured proteins, the essential structural feature appears to be a three-dimensional network. The network may be held tc ether by primary bonds, by secondary forces localized at certain points on the molecules, or by nonlocalized secondary attractive forces. These alternatives are discussed in Section III below, together with the results of some investigations of synthetic polymers, rubbers, and cellulose derivatives which facilitate the understanding of protein systems. [Pg.4]


A tremendous variety of structures is known, and some of the three-dimensional network ones are porous enough to show the same type of swelling phenomena as the layer structures—and also ion exchange behavior. The zeolites fall in this last category and have been studied extensively, both as ion exchangers and as gas adsorbents (e.g.. Refs. 185 and 186). As an example, Goulding and Talibudeen have reported on isotherms and calorimetric heats of Ca -K exchange for several aluminosilicates [187]. [Pg.417]

If the concentration of junction points is high enough, even branches will contain branches. Eventually a point is reached at which the amount of branching is so extensive that the polymer molecule becomes a giant three-dimensional network. When this condition is achieved, the molecule is said to be cross-linked. In this case, an entire macroscopic object may be considered to consist of essentially one molecule. The forces which give cohesiveness to such a body are covalent bonds, not intermolecular forces. Accordingly, the mechanical behavior of cross-linked bodies is much different from those without cross-linking. [Pg.10]

We noted above that the presence of monomer with a functionality greater than 2 results in branched polymer chains. This in turn produces a three-dimensional network of polymer under certain circumstances. The solubility and mechanical behavior of such materials depend critically on whether the extent of polymerization is above or below the threshold for the formation of this network. The threshold is described as the gel point, since the reaction mixture sets up or gels at this point. We have previously introduced the term thermosetting to describe these cross-linked polymeric materials. Because their mechanical properties are largely unaffected by temperature variations-in contrast to thermoplastic materials which become more fluid on heating-step-growth polymers that exceed the gel point are widely used as engineering materials. [Pg.314]

Aluminosilicates. These silicates consist of frameworks of silica and alumina tetrahedra linked at all corners to form three-dimensional networks familiar examples are the common rock-forming minerals quartz and feldspar. Framework silicates generally form blocky crystals, more isotropic... [Pg.323]

Solution Properties. Lignin in wood behaves as an insoluble, three-dimensional network. Isolated lignins (milled wood, kraft, or organosolv lignins) exhibit maximum solubiUty in solvents having a Hildebrand s solubiUty parameter, 5, of 20.5 — 22.5(J/cm ) (10 — ll(cal/cm ) > and A// in excess of 0.14 micrometer where A]1 is the infrared shift in the O—D bond when the solvents are mixed with CH OD. Solvents meeting these requirements include dioxane, acetone, methyl ceUosolve, pyridine, and dimethyl sulfoxide. [Pg.142]

The tertiary metal phosphates are of the general formula MPO where M is B, Al, Ga, Fe, Mn, etc. The metal—oxygen bonds of these materials have considerable covalent character. The anhydrous salts are continuous three-dimensional networks analogous to the various polymorphic forms of siHca. Of limited commercial interest are the alurninum, boron, and iron phosphates. Boron phosphate [13308-51 -5] BPO, is produced by heating the reaction product of boric acid and phosphoric acid or by a dding H BO to H PO at room temperature, foUowed by crystallization from a solution containing >48% P205- Boron phosphate has limited use as a catalyst support, in ceramics, and in refractories. [Pg.335]

Photopolymerizable compositions based on monomeric acryflc or other ethylenicaHy unsaturated acid derivatives are becoming increasingly popular. When multiftmctional derivatives are employed, three-dimensional networks having high strength and abrasion resistance are possible on exposure to light. A typical composition may contain an ethoxylated trimethylolpropane triacrylate monomer, a perester phenacjhdene initiator (69), and an acryflc acid—alkyl methacrylate copolymer as binder. [Pg.44]

In order to cute, ie, form three-dimensional network stmctures through chemical changes on polymer systems with it radiation, it is necessary to design a reactive functionaUty within the polymer stmcture so that coupling reactions can take place between the polymer chains as shown ia the foUowiag reaction ... [Pg.429]

Fig. 10. Polymerization behavior of silica. In basic solution (B), particles grow in size and decrease in number in acidic solution or in the presence of flocculating salts (A), particles aggregate into three-dimensional networks and form gels (1). Fig. 10. Polymerization behavior of silica. In basic solution (B), particles grow in size and decrease in number in acidic solution or in the presence of flocculating salts (A), particles aggregate into three-dimensional networks and form gels (1).
Properties. SUica gel (see Eig. 8) is a coherent, rigid, continuous three-dimensional network of spherical particles of coUoidal sUica. Both sUoxane, —Si—O—Si—, and sUanol, —Si—O—H, bonds are present in the gel stmcture. The pores are intercoimected and fUled with water and/or alcohol from the hydrolysis and condensation reactions (40). A hydrogel is a gel in which the pores are filled with water. A xerogel is a gel from which the hquid medium... [Pg.490]

SiHcone mbber has a three-dimensional network stmcture caused by cross-linking of polydimethyl siloxane chains. Three reaction types are predominantiy employed for the formation of siHcone networks (155) peroxide-induced free-radical processes, hydrosdylation addition cure, and condensation cure. SiHcones have also been cross-linked using radiation to produce free radicals or to induce photoinitiated reactions. [Pg.47]

Unfortunately, because self-condensation of silanols on the same silicone can occur almost spontaneously, the reaction of disdanol or trisilanol compounds with telechelic sdanol polymers to form a three-dimensional network is not feasible. Instead, the telechelic polymers react with cross-linkers containing reactive groups such as alkoxysdanes, acyloxysdanes, silicon hydrides, or methylethyloximesilanes, as in the reactions in equations 18—21 (155). [Pg.48]

Production of net-shape siUca (qv) components serves as an example of sol—gel processing methods. A siUca gel may be formed by network growth from an array of discrete coUoidal particles (method 1) or by formation of an intercoimected three-dimensional network by the simultaneous hydrolysis and polycondensation of a chemical precursor (methods 2 and 3). When the pore Hquid is removed as a gas phase from the intercoimected soHd gel network under supercritical conditions (critical-point drying, method 2), the soHd network does not coUapse and a low density aerogel is produced. Aerogels can have pore volumes as large as 98% and densities as low as 80 kg/m (12,19). [Pg.249]

Na[Sb(OH)g], respectively. The latter compound is one of the least soluble sodium salts known and is useful in sodium analysis. Numerous polyantimonate(V) derivatives are prepared by heat treatment of mixtures of antimony trioxide and other metal oxides or carbonates. Of these, K Sb O [12056-59-6] and K Sb O [52015-49-3] have been characterized by x-ray. These consist of three-dimensional networks of SbO in which corners and edges are shared with K" ions located in tunnels through the network (23). Simple species such as SbO and Sb20 2, analogous to orthophosphate and pyrophosphate, apparendy do not exist. [Pg.203]

Another catalytically important zeohte is ZSM-5 (81). There is a three-dimensional network of pores in this zeohte, represented in Figure 16. A set of straight parallel pores is intersected by a set of perpendicular zigzag pores. These pores are smaller than those of the faujasites (Fig. 15). ZSM-5 is classified as a medium pore zeohte, the faujasites ate large pore zeohtes, and zeohte A (Table 2) is a small pore zeohte. [Pg.178]

Hydrogels are water-containing polymers, hydrophilic in nature, yet insoluble. In water, these polymers swell to an equiUbrium volume and maintain thek shape. The hydrophilicity of hydrogel is a result of the presence of functional groups such as —NH2, —OH, —COOH, —CONH2, —CONH—, —SO H, etc. The insolubihty and stabiUty of hydrogels are caused by the presence of a three-dimensional network. The scope, preparation, and characterization of hydrogels has been reviewed (107). [Pg.103]

Pure silica contains no metal ions and every oxygen becomes a bridge between two silicon atoms giving a three-dimensional network. The high-temperature form, shown in Fig. 16.3(c), is cubic the tetrahedra are stacked in the same way as the carbon atoms in the diamond-cubic structure. At room temperature the stable crystalline form of silica is more complicated but, as before, it is a three-dimensional network in which all the oxygens bridge silicons. [Pg.172]

After hardening, UF-resins consist of insoluble, more or less three-dimensional networks and cannot be melted or thermoformed again. At their application stage, UF-resins are still soluble or dispersed in water or are spray dried powders, which in most cases are redissolved and redispersed in water for application. [Pg.1046]


See other pages where Three dimensional network is mentioned: [Pg.319]    [Pg.1957]    [Pg.117]    [Pg.202]    [Pg.304]    [Pg.285]    [Pg.286]    [Pg.433]    [Pg.301]    [Pg.548]    [Pg.425]    [Pg.427]    [Pg.427]    [Pg.432]    [Pg.236]    [Pg.469]    [Pg.477]    [Pg.488]    [Pg.491]    [Pg.251]    [Pg.258]    [Pg.259]    [Pg.213]    [Pg.328]    [Pg.294]    [Pg.495]    [Pg.20]    [Pg.70]    [Pg.11]    [Pg.167]    [Pg.232]    [Pg.245]    [Pg.1052]   
See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.539 , Pg.567 ]

See also in sourсe #XX -- [ Pg.92 , Pg.119 , Pg.138 ]

See also in sourсe #XX -- [ Pg.539 , Pg.567 ]

See also in sourсe #XX -- [ Pg.69 , Pg.183 ]




SEARCH



Biomaterials three-dimensional polymeric networks

Borides with Three-Dimensional Boron Networks

Coordination polymers three-dimensional networks

Cross-Linking of Hyaluronan into a Three-Dimensional Network

Hydrogels three-dimensional network

Interpenetrating polymer networks three-dimensional

Network four-connected three-dimensional

Rubber elasticity three-dimensional network

Schematic illustration three-dimensional network

Silicate melt three-dimensional network

Structure of Three-dimensional Polymeric Networks as Biomaterials

Structure with three-dimensional boron networks

Tectosilicates-A Three-Dimensional Network

Three dimensional circuit wiring network

Three-dimensional channel network

Three-dimensional cluster networks

Three-dimensional hydrocarbon networks

Three-dimensional network of polymer

Three-dimensional network of polymer molecules

Three-dimensional network of pores

Three-dimensional network polymers

Three-dimensional networks, polysiloxanes

Three-dimensional polymeric networks

Three-dimensional polymeric networks as biomaterials

Three-dimensional polymeric networks structural characteristics

© 2024 chempedia.info