Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Size ranges

Figure 3.3 shows a simple type of classifier. In this device, a large tank is subdivided into several sections. A size range of solid particles suspended in vapor or liquid enters the tank. The larger, faster-settling particles settle to the bottom close to the entrance, and the slower-settling particles settle to the bottom close to the exit. The vertical baffles in the tank allow the collection of several fractions. [Pg.70]

Equipment Main particle separation mechanisip Approximate particle size range (/xm)... [Pg.301]

Table 4 shows, the sources are available with physical sizes ranging from 1 mm x 1 mm up to 3 mm x 3 mm. They are produced from firmly compressed selenium pellets of cylindrical shape. The activities range up to 3 TBq or 80 Ci, which is the maximum allowed loading of the GammaMat SE portable isotope transport and working container, as well as the Source Projector M-Se crawler camera. [Pg.425]

Phospholipid molecules form bilayer films or membranes about 5 nm in thickness as illustrated in Fig. XV-10. Vesicles or liposomes are closed bilayer shells in the 100-1000-nm size range formed on sonication of bilayer forming amphiphiles. Vesicles find use as controlled release and delivery vehicles in cosmetic lotions, agrochemicals, and, potentially, drugs. The advances in cryoelec-tron microscopy (see Section VIII-2A) in recent years have aided their characterization [70-72]. Additional light and x-ray scattering measurements reveal bilayer thickness and phase transitions [70, 71]. Differential thermal analysis... [Pg.548]

Light microscopy allows, in comparison to other microscopic methods, quick, contact-free and non-destmctive access to the stmctures of materials, their surfaces and to dimensions and details of objects in the lateral size range down to about 0.2 pm. A variety of microscopes with different imaging and illumination systems has been constmcted and is conunercially available in order to satisfy special requirements. These include stereo, darkfield, polarization, phase contrast and fluorescence microscopes. [Pg.1655]

The production of organic polymeric particles in tire size range of 30-300 nm by emulsion polymerization has become an important teclmological application of surfactants and micelles. Emulsion polymerization is very well and extensively reviewed in many monographs and texts [67, 68], but we want to briefly illustrated tire role of micelles in tliis important process. [Pg.2596]

Although the remainder of this contribution will discuss suspensions only, much of the theory and experimental approaches are applicable to emulsions as well (see [2] for a review). Some other colloidal systems are treated elsewhere in this volume. Polymer solutions are an important class—see section C2.1. For surfactant micelles, see section C2.3. The special properties of certain particles at the lower end of the colloidal size range are discussed in section C2.17. [Pg.2667]

This relationship holds for wavevectors tliat probe tire appropriate size range, R [Pg.2684]

Stdber W, Fink A and Bohn E 1968 Controlled growth of monodisperse silioa spheres in the mioron size range J. Colloid Interface Sol. 26 62-9... [Pg.2690]

The basis of the classification is that each of the size ranges corresponds to characteristic adsorption effects as manifested in the isotherm. In micropores, the interaction potential is significantly higher than in wider pores owing to the proximity of the walls, and the amount adsorbed (at a given relative pressure) is correspondingly enhanced. In mesopores, capillary condensation, with its characteristic hysteresis loop, takes place. In the macropore range the pores are so wide that it is virtually impossible to map out the isotherm in detail because the relative pressures are so close to unity. [Pg.25]

At the upper end of the pore size range there is no theoretical limit to the applicability of the Kelvin equation to adsorption isotherms so long as 9 < 90°. There is however a practical limitation, the nature of which may be gathered from Table 3.8 which gives the relative pressures corresponding to... [Pg.164]

Solid samples are separated by particle size using one or more sieves. By selecting several sieves of different mesh size, particulates with a narrow size range can be isolated from the solid matrix. Sieves are available in a variety of mesh sizes, ranging from approximately 25 mm to 40 )j,m. [Pg.263]

Two classes of micron-sized stationary phases have been encountered in this section silica particles and cross-linked polymer resin beads. Both materials are porous, with pore sizes ranging from approximately 50 to 4000 A for silica particles and from 50 to 1,000,000 A for divinylbenzene cross-linked polystyrene resins. In size-exclusion chromatography, also called molecular-exclusion or gel-permeation chromatography, separation is based on the solute s ability to enter into the pores of the column packing. Smaller solutes spend proportionally more time within the pores and, consequently, take longer to elute from the column. [Pg.593]

Polymerization occurs in particles whose dimensions are in the nanometer size range, perhaps 10 times smaller than the particles in suspension polymerization. [Pg.398]

Before we examine the polymerization process itself, it is essential to understand the behavior of the emulsifier molecules. This class of substances is characterized by molecules which possess a polar or ionic group or head and a hydrocarbon chain or tail. The latter is often in the 10-20 carbon atom size range. Dodecyl sulfate ions, from sodium dodecyl sulfate, are typical ionic emulsifiers. These molecules have the following properties which are pertinent to the present discussion ... [Pg.398]

In a typical amorphous adsorbent the distribution of pore size may be very wide, spanning the range from a few nanometers to perhaps one micrometer. Siace different phenomena dominate the adsorptive behavior ia different pore size ranges, lUPAC has suggested the foUowiag classification ... [Pg.254]

Sodium Bicarbonate. Many soda ash plants convert a portion of their production to sodium bicarbonate [144-55-8], NaHCO. Soda ash is typically dissolved, carbonated, and cooled to crystallize sodium bicarbonate. The mother Hquor is heated and recycled. The soHd bicarbonate is dried in flash or tray driers, screened, and separated into various particle size ranges. Bicarbonate markets include food, pharmaceuticals, catde feed, and fire extinguishers. U.S. demand was approximately 320,000 t in 1989 world demand was estimated at one million metric tons. [Pg.527]


See other pages where Size ranges is mentioned: [Pg.375]    [Pg.19]    [Pg.506]    [Pg.723]    [Pg.2395]    [Pg.2396]    [Pg.2397]    [Pg.2898]    [Pg.188]    [Pg.84]    [Pg.1]    [Pg.52]    [Pg.201]    [Pg.46]    [Pg.46]    [Pg.46]    [Pg.164]    [Pg.165]    [Pg.176]    [Pg.332]    [Pg.706]    [Pg.143]    [Pg.144]    [Pg.207]    [Pg.262]    [Pg.14]    [Pg.142]    [Pg.373]    [Pg.396]    [Pg.400]    [Pg.400]    [Pg.411]    [Pg.48]    [Pg.120]   
See also in sourсe #XX -- [ Pg.14 , Pg.15 , Pg.40 ]




SEARCH



Characterization techniques resolution size ranges

Colloidal size ranges

Colloids size range

Design control range size

Dispersed particles, size range

Droplet sizes range

Emulsions droplet size range

Free-flowing particles size range

Microemulsions droplet size range

Micron-size range

Molecules size range

Multiple aperture method for powders having a wide size range

Narrow size range

Organic colloidal materials, particle size ranges

Particles respirable size range

Particles typical size ranges

Pipes size ranges

Pore size ranges

Range of product size

Range of sizes

Selection of Pore Size and Separation Range

Size distribution ultrafine range

Size range-particles

Size reduction operating ranges of equipment

Size-exclusion chromatography molecular weight separation range

Submicrometer size range

Ultrafine-size range

Wide size range

© 2024 chempedia.info