Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spatial arrangement

The spatial arrangement of atoms in two-dimensional protein arrays can be detennined using high-resolution transmission electron microscopy [20]. The measurements have to be carried out in high vacuum, but since tire metliod is used above all for investigating membrane proteins, it may be supposed tliat tire presence of tire lipid bilayer ensures tliat tire protein remains essentially in its native configuration. [Pg.2818]

If the spatial arrangement of atoms is required this can be deduced from the basic structure by neglecting the positions occupied by lone pairs of electrons. Water, for example, can be described as a V shape whilst ammonia is a trigonal pyramid. [Pg.39]

To code the configuration of a molecule various methods are described in Section 2.8. In particular, the use of wedge symbols clearly demonstrates the value added if stereodescriptors are included in the chemical structure information. The inclusion of stereochemical information gives a more realistic view of the actual spatial arrangement of the atoms of the molecule imder consideration, and can therefore be regarded as between the 2D (topological) and the 3D representation of a chemical structure. [Pg.91]

Basically, two different methods arc commonly used for representing a chemical struchiive in 3D space. Both methods utilize different coordinate systems to describe the spatial arrangement of the atoms of a molecule under con.sidcration. The most common way is to choose a Cartesian coordinate system, i.e., to code the X-, y-, and z-coordinates of each atom, usually as floating point numbers, For each atom the Cartesian coordinates can be listed in a single row. giving consecutively the X-, )> , and z-valnc.s. Figure 2-90 illustrates this method for methane. [Pg.92]

The second method for representing a molecule in 3D space is to use internal coordinates such as bond lengths, bond angles, and torsion angles. Internal coordinates describe the spatial arrangement of the atoms relative to each other. Figure 2-91 illustratc.s thi.s for 1,2-dichlorocthanc. [Pg.93]

Z-matriccs arc commonly used as input to quantum mechanical ab initio and serai-empirical) calculations as they properly describe the spatial arrangement of the atoms of a molecule. Note that there is no explicit information on the connectivity present in the Z-matrix, as there is, c.g., in a connection table, but quantum mechanics derives the bonding and non-bonding intramolecular interactions from the molecular electronic wavefunction, starting from atomic wavefiinctions and a crude 3D structure. In contrast to that, most of the molecular mechanics packages require the initial molecular geometry as 3D Cartesian coordinates plus the connection table, as they have to assign appropriate force constants and potentials to each atom and each bond in order to relax and optimi-/e the molecular structure. Furthermore, Cartesian coordinates are preferable to internal coordinates if the spatial situations of ensembles of different molecules have to be compared. Of course, both representations are interconvertible. [Pg.94]

A.s mentioned above, most molecules ean adopt more than one conformation, or molecular geometry, simply by rotation around rotatable bonds. Thus, the different conformations of a molecule can be regarded as different spatial arrangements of the atoms, but with an identical constitution and configuration, They are interconvertible and mo.stly they cannot be i.solatcd separately. Figure 2-101 show-s a. super-imposition of a set of conformations of 2R-benzylsuccinatc (cf. Figure 2-89). [Pg.103]

Molecules are usually represented as 2D formulas or 3D molecular models. WhOe the 3D coordinates of atoms in a molecule are sufficient to describe the spatial arrangement of atoms, they exhibit two major disadvantages as molecular descriptors they depend on the size of a molecule and they do not describe additional properties (e.g., atomic properties). The first feature is most important for computational analysis of data. Even a simple statistical function, e.g., a correlation, requires the information to be represented in equally sized vectors of a fixed dimension. The solution to this problem is a mathematical transformation of the Cartesian coordinates of a molecule into a vector of fixed length. The second point can... [Pg.515]

Vhen calculating the total energy of the system, we should not forget the Coulomb inter-ction between the nuclei this is constant within the Born-Oppenheimer approximation Dr a given spatial arrangement of nuclei. When it is desired to change the nuclear positions,... [Pg.70]

Structures A B and C represent different conformations of hydrogen peroxide Conformations are different spatial arrangements of a molecule that are generated by rotation about single bonds Although we can t tell from simply looking at these struc tures we now know from experimental studies that C is the most stable conformation... [Pg.104]

The substituted carbons have the spatial arrangement shown)... [Pg.119]

Effects that arise because one spatial arrangement of electrons (or orbitals or bonds) IS more stable than another are called stereoelectronic effects There is a stereoelec tromc preference for the anti coplanar arrangement of proton and leaving group in E2 reactions Although coplanarity of the p orbitals is the best geometry for the E2 process modest deviations from this ideal can be tolerated In such cases the terms used are syn periplanar and anti periplanar... [Pg.217]

Stereochemistry refers to chemistry in three dimensions Its foundations were laid by Jacobus van t Hoff and Joseph Achille Le Bel m 1874 Van t Hoff and Le Bel mde pendently proposed that the four bonds to carbon were directed toward the corners of a tetrahedron One consequence of a tetrahedral arrangement of bonds to carbon is that two compounds may be different because the arrangement of their atoms m space IS different Isomers that have the same constitution but differ m the spatial arrangement of their atoms are called stereoisomers We have already had considerable experience with certain types of stereoisomers—those involving cis and trans substitution patterns m alkenes and m cycloalkanes... [Pg.281]

What IS the structure of the transition state m an 8 2 reaction s In particular what is the spatial arrangement of the nucleophile m relation to the leaving group as reactants pass through the transition state on their way to products ... [Pg.331]

Stereochemistry (Chapter 7) Chemistry in three dimensions the relationship of physical and chemical properties to the spatial arrangement of the atoms in a molecule Stereoelectron ic effect (Section 5 16) An electronic effect that depends on the spatial arrangement between the or bitals of the electron donor and acceptor Stereoisomers (Section 3 11) Isomers with the same constitu tion but that differ in respect to the arrangement of their atoms in space Stereoisomers may be either enantiomers or diastereomers... [Pg.1294]

The medium-size rings (7 to 12 ring atoms) are relatively free of angle strain and can easily take a variety of spatial arrangements. They are not large enough to avoid all nonbonded interactions between atoms. [Pg.42]

Structural Formula and Prefixes. In the structural formula the sequence and spatial arrangement of the atoms in a molecule are indicated. [Pg.214]

Fig. 25. Schematic representation of imprinting (a) cross-linking polymerization ia the presence of a template (T) to obtain cavities of specific shape and a defined spatial arrangement of functional groups (binding sites. A—C) (b) cross-linked polymer prepared from the template monomer and ethylene... Fig. 25. Schematic representation of imprinting (a) cross-linking polymerization ia the presence of a template (T) to obtain cavities of specific shape and a defined spatial arrangement of functional groups (binding sites. A—C) (b) cross-linked polymer prepared from the template monomer and ethylene...
This brief overview of the types of fibrous materials is intended to indicate the broad range of materials that can be produced from fibers. Since the properties of fibrous materials depend both on the properties of the fibers themselves and on the spatial arrangement of the fibers in the assembly, a given type of fiber may be used in many different end products, and similarly a given end product can be produced from different fiber types. [Pg.267]

Note that the relative spatial arrangement of the phenyl, amine, and hydroxyl functionahties are identical for (R)-alprenolol and (5)-sotalol. In addition to P-blocking activities, some of these compounds also possess potent local anaesthetic activity (see Anesthetics). The membrane stabilizing activity, however, is not stereoselective and correlates directly with the partition coefficient (hydrophobicity) of the compound. [Pg.250]

The geometries of the phosphoms atom are related to the hybridization and the coordination number. Some of the more commonly encountered hybridizations and their corresponding spatial arrangements iaclude the following. [Pg.358]

The chemical and physical properties of cellulose depend ia large measure on the spatial arrangements of the molecules. Therefore, cellulose stmctures have been studied iatensively, and the resulting information has been important ia helping to understand many other polymers. Despite the extent of work, however, there are stiU many controversies on the most important details. The source of the cellulose and its history of treatment both affect the stmcture at several levels. Much of the iadustrial processiag to which cellulose is subjected is iatended to alter the stmcture at various levels ia order to obtain desired properties. [Pg.239]

All the four essential features of the active site of chymotrypsin are thus also present in subtilisin. Furthermore, these features are spatially arranged in the same way in the two enzymes, even though different framework structures bring different loop regions into position in the active site. This is a classical example of convergent evolution at the molecular level. [Pg.217]

The classical approach for determining the structures of crystalline materials is through diflfiaction methods, i.e.. X-ray, neutron-beam, and electron-beam techniques. Difiiaction data can be analyzed to yield the spatial arrangement of all the atoms in the crystal lattice. EXAFS provides a different approach to the analysis of atomic structure, based not on the diffraction of X rays by an array of atoms but rather upon the absorption of X rays by individual atoms in such an array. Herein lie the capabilities and limitations of EXAFS. [Pg.222]


See other pages where Spatial arrangement is mentioned: [Pg.109]    [Pg.109]    [Pg.255]    [Pg.372]    [Pg.372]    [Pg.2627]    [Pg.77]    [Pg.100]    [Pg.106]    [Pg.562]    [Pg.133]    [Pg.289]    [Pg.1030]    [Pg.385]    [Pg.325]    [Pg.250]    [Pg.416]    [Pg.188]    [Pg.500]    [Pg.384]    [Pg.532]    [Pg.2133]    [Pg.357]    [Pg.263]    [Pg.646]    [Pg.651]    [Pg.75]   
See also in sourсe #XX -- [ Pg.16 ]

See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Atoms spatial arrangements

Autocorrelation function, spatial arrangement

INDEX spatial arrangements

Oxygen atoms, spatial arrangement

Spatial Arrangement of the RNAs in Situ

Spatial and Color Arrangement

Spatial arrangements, typical

Steroids spatial arrangement

Vascular Development—Spatial Arrangement

© 2024 chempedia.info