Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Induced coupled plasma atomic emission spectroscopy

Characterization. The TPA concentration in the reaction mixtures was determined by Induced Coupled Plasma Atomic Emission Spectroscopy (ICPAES) carbon analysis, which was preceded by n-hexane extraction in order to remove tripropylamine. [Pg.261]

GPC (total radioactive strontium) = beta gas proportional counter Bq = Becquerel dpm = disintegrations per minute EDTA = ethylenediamine tetraacetic acid GFAAS (total strontium) = graphite furnace atomic absorption spectroscopy ICP-AES (total strontium) = inductively coupled plasma atomic emission spectroscopy ICP-MS (isotopic strontium composition) = inductively coupled plasma-mass spectrometry LSC (isotopic quanitification of 89Srand 90Sr) = liquid scintillation counting pCi = pico curies (10-12 curies) PIXE (total strontium) = proton induced x-ray emission TMAH = tetramethylammonium hydroxide TNA (total strontium) = thermal neutron activation and radiometric measurement TRXF (total strontium) = total-reflection x-ray fluorescence... [Pg.286]

X-ray spectroscopy Finally, X-ray fluorescence can be used to determine the elemental profile of inks and papers. Some techniques based on X-ray properties (particle-induced X-ray emission and inductively coupled plasma atomic emission spectroscopy) have been applied to writing inks. Nevertheless, it was found that there were not enough variation between the different particles, present in ink formula, to help distinguish from each other. [Pg.1731]

GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES - also referred to as inductively coupled plasma-optical emission spectroscopy, or ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) are all routinely utilized in pharmaceutical applications. While there are other techniques of note available, such as micro-wave induced plasma (MIP) or direct coupled plasma (DCP), they have not been routinely used in the pharmaceutical industry, and will, therefore, not be discussed here. The theories involved in the use of FAAS, GFAAS, ICP and ICP-MS may be found in other articles of this Encyclopedia. [Pg.629]

Other frequently used methods for determining fluoride include ion and gas chromatography [150,204,205] and aluminium monofluoride (AIF) molecular absorption spectrometry [206,207]. Less frequently employed methods include enzymatic [208], catalytic [209], polarographic [210] and voltammetric methods [211], helium microwave-induced [212] or inductively coupled plasma atomic emission spectrometry [213], electrothermal atomic absorption spectrometry [214], inductively coupled plasma-mass spectrometry [215], radioactivation [216], proton-induced gamma emission [217], near-infrared spectroscopy [218] and neutron activation analysis [219]. [Pg.534]

Graphite furnace AAS Atomic fluorescence spectroscopy Inductively-coupled-plasma optical-emission spectroscopy Glow-discharge optical-emission spectroscopy Laser-excited resonance ionization spectroscopy Laser-excited atomic-fluorescence spectroscopy Laser-induced-breakdown spectroscopy Laser-induced photocoustic spectroscopy Resonance-ionization spectroscopy... [Pg.208]

Direct nebulization of an aqueous or organic phase containing extracted analytes has been widely used in flame atomic absorption spectroscopy [69-72], inductively coupled plasma atomic emission spectrometry [73-76], microwave induced plasma atomic emission spectrometry [77-80] and atomic fluorescence spectrometry [81], as well as to interface a separation step to a spectrometric detection [82-85]. [Pg.62]

XRD, X-ray diffraction XRF, X-ray fluorescence AAS, atomic absorption spectrometry ICP-AES, inductively coupled plasma-atomic emission spectrometry ICP-MS, Inductively coupled plasma/mass spectroscopy IC, ion chromatography EPMA, electron probe microanalysis SEM, scanning electron microscope ESEM, environmental scanning electron microscope HRTEM, high-resolution transmission electron microscopy LAMMA, laser microprobe mass analysis XPS, X-ray photo-electron spectroscopy RLMP, Raman laser microprobe analysis SHRIMP, sensitive high resolution ion microprobe. PIXE, proton-induced X-ray emission FTIR, Fourier transform infrared. [Pg.411]

The most utilized methods include X-ray fluorescence (XRF), atomic absorption spectroscopy (AAS), activation analysis (AA), optical emission spectroscopy (OES) and inductively coupled plasma (ICP), mass spectroscopy (MS). Less frequently used techniques include ion-selective electrode (ISE), proton induced X-ray emission (PIXE), and ion chromatography (IC). In different laboratories each of these methods may be practiced by using one of several optional approaches or techniques. For instance, activation analysis may involve conventional thermal neutron activation analyses, fast neutron activation analysis, photon activation analysis, prompt gamma activation analysis, or activation analysis with radio chemical separations. X-ray fluorescence options include both wave-length and/or energy dispersive techniques. Atomic absorption spectroscopy options include both conventional flame and flameless graphite tube techniques. [Pg.21]

Dube, P. (1988). Automated direct determination of copper in urine and whole blood by Zeeman-corrected atomic absorption spectrometry. Atomic Spectrosc., 2, 55-58 Fell, G.S., Smith, H., Howie, R.A. (1968). Neutron activation analysis for copper in biological material applied to Wilson s disease, J. Clin. Path., 21, 8-11 Gonsior, B., and Roth, M. (1983) Trace element analysis by particle and photon-induced X-ray emission spectroscopy, Talanta, 385-400 Hartley, T.F. and Ellis, D.J. (1972). Combined electrolysis and atomic absorption for the determination of copper in biological materials, Proc. Soc. Anal. Chem., 2, 281 Herber, R.F.M., Pieters. H.J.. and Elgersma, J.W., (1982). A comparison of inductively coupled argon plasma atomic emission spectrometry and electrothermal atomization atomic absorption spectrometry in the determination of copper and zinc in serum, Fresenius Z. Anal. Chem., 313.103-107... [Pg.369]

See also Activation Anaiysis Neutron Activation Charged-Particle Activation Photon Activation. Atomic Emission Spectrometry Inductively Coupled Plasma. Atomic Mass Spectrometry Inductively Coupled Plasma. Mass Spectrometry Overview. Surface Analysis Particle-Induced X-Ray Emission Auger Electron Spectroscopy Ion Scattering Nuclear Reaction Analysis and Elastic Recoil Detection. X-Ray Fluorescence and Emission Wavelength Dispersive X-Ray Fluorescence Energy Dispersive X-Ray Fluorescence. [Pg.4568]

In addition to these induced effects, even undisturbed excited states will not live forever. The general deactivation is a radiationless process. Relatively few molecules exhibit spontaneous emission, called luminescence in the visible, or emission. This deactivation process of the excited state is a statistical effect and does not directly correlate with an act of excitation. Except induced absorption, plasma coupling, hot flames, or sparks can yield a relatively high population in the excited state which will depopulate by emission. This emission is used in analytics, especially in atomic emission spectroscopy. Since atoms in the gases are not influenced by the surrounding and their energies are not smeared by vibrational interactions, they will exhibit sharp characteristic lines for different metals. The advantages are discussed in more detail in Chap. 6 of this book. [Pg.66]

The development of many alternative plasma sources has led to a resurgence of analytical atomic emission spectroscopy in recent years. The major plasma emission sources used for gas chromatographic detection have been the microwave-induced helium plasma, under atmospheric or reduced pressure (MIP), and the DC argon plasma (DCP). The inductively coupled argon plasma (ICP) has been used much less for GC than as an HPLC detector [4]. [Pg.3]

Further designs of ion sources applied in plasma spectroscopy such as electrodeless microwave induced plasmas (MIPs) operating in a noble gas atmosphere at low power (mostly below 200 W) or capacitively coupled microwave plasma using Ar, He or N2 the as plasma gas (at 400-800 W) were described in detail by Broekaert.33 Microwave plasmas produced by a magnetron are operated at 1-5 GHz. Their special application fields for selected elements and/or element species are based (due to the low power applied) in atomic emission spectrometry.33... [Pg.36]

Inductively Coupled and Microwave Induced Plasma Sources for Mass Spectrometry 4 Industrial Analysis with Vibrational Spectroscopy 5 Ionization Methods in Organic Mass Spectrometry 6 Quantitative Millimetre Wavelength Spectrometry 7 Glow Discharge Optical Emission Spectroscopy A Practical Guide 8 Chemometrics in Analytical Spectroscopy, 2nd Edition 9 Raman Spectroscopy in Archaeology and Art History 10 Basic Chemometric Techniques in Atomic Spectroscopy... [Pg.321]

Since the mid-1960s, a variety of analytical chemistry techniques have been used to characterize obsidian sources and artifacts for provenance research (4, 32-36). The most common of these methods include optical emission spectroscopy (OES), atomic absorption spectroscopy (AAS), particle-induced X-ray emission spectroscopy (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence spectroscopy (XRF), and neutron activation analysis (NAA). When selecting a method of analysis for obsidian, one must consider accuracy, precision, cost, promptness of results, existence of comparative data, and availability. Most of the above-mentioned techniques are capable of determining a number of elements, but some of the methods are more labor-intensive, more destructive, and less precise than others. The two methods with the longest and most successful histoty of success for obsidian provenance research are XRF and NAA. [Pg.527]

AAS atomic absorption spectroscopy Dopa 3,4-dihydroxyphenylalanine ICP inductively coupled plasma PIXE proton-induced X-ray emission analysis... [Pg.214]

Several different methods have been utilized for measuring iron in these biological samples. However, spectrophotometry is the most widely used because it does not require unusual equipment and is readily amenable to automation. Atomic absorption spectrometry is effectively used for tissue and urine analyses [33-35], but unreliable results are obtained with serum due to sensitivity limitations as well as matrix and hemoglobin interferences [35]. Other methods utilizing inductively coupled plasma emission spectroscopy [36], coulometry [37], proton induced X-ray emission [38], neutron activation analysis [39], radiative energy attenuation [40], and radiometry with Fe [41] have been described but, with the exception of coulometry, have not become standard procedures in the clinical chemistry laboratory, inasmuch as sophisticated and expensive instrumentation is required in some instances. However, some of them, e.g., neutron activation, may be the method of choice for definitive accurate analysis. [Pg.417]


See other pages where Induced coupled plasma atomic emission spectroscopy is mentioned: [Pg.214]    [Pg.71]    [Pg.78]    [Pg.27]    [Pg.214]    [Pg.71]    [Pg.78]    [Pg.27]    [Pg.93]    [Pg.542]    [Pg.105]    [Pg.379]    [Pg.1599]    [Pg.614]    [Pg.155]    [Pg.27]    [Pg.24]    [Pg.330]    [Pg.260]    [Pg.39]    [Pg.239]    [Pg.19]    [Pg.193]    [Pg.395]    [Pg.111]    [Pg.1905]    [Pg.316]    [Pg.99]    [Pg.102]    [Pg.149]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Atomic coupling

Atomic emission

Atomic emission spectroscopy

Atomic spectroscopy

Coupled Plasma

Coupled Plasma Atomic Emission Spectroscopy

Emission spectroscopy)

Induced coupled plasma atomic emission

Induced emission

PLASMA ATOMIC EMISSION

Plasma atomic spectroscopy

Plasma emission spectroscopy

Plasma spectroscopy

Plasma-induced

© 2024 chempedia.info