Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis copolymers

Template copolymerization seems to be applied to the synthesis of copolymers with unconventional sequences of units. As it was shown, by copolymerization of styrene with oligomers prepared from p-cresyl-formaldehyde resin esterified by methacrylic or acrylic acid - short ladder-type blocks can be introduced to the macromolecule. After hydrolysis, copolymer with blocks of acrylic or methacrylic acid groups can be obtained. Number of groups in the block corresponds to the number of units in oligomeric multimonomer. Such copolymers cannot be obtained by the conventional copolymerization. [Pg.132]

Hydrolysis of the polymers can be affected by spontaneous degradation of the material from the surface or the bulk or by enzymatic hydrolysis. Copolymers of lactic acid and glycolic acid (PLGA) are by far the most common biocompatible polymers that undergo bulk erosion by... [Pg.416]

Prepared generally by ester interchange from polyvinylacelate (ethanoate) using methanol and base also formed by hydrolysis of the acetate by NaOH and water. The properties of the poly(vinyl alcohol) depend upon the structure of the original polyvinyl acetate. Forms copolymers. Used as a size in the textile industry, in aqueous adhesives, in the production of polyvinyl acetates (e.g. butynal) for safety glasses. U.S. production 1980... [Pg.323]

Under acidic conditions, furfuryl alcohol polymerizes to black polymers, which eventually become crosslinked and insoluble in the reaction medium. The reaction can be very violent and extreme care must be taken when furfuryl alcohol is mixed with any strong Lewis acid or Brn nstad acid. Copolymer resins are formed with phenoHc compounds, formaldehyde and/or other aldehydes. In dilute aqueous acid, the predominant reaction is a ring opening hydrolysis to form levulinic acid [123-76-2] (52). In acidic alcohoHc media, levulinic esters are formed. The mechanism for this unusual reaction in which the hydroxymethyl group of furfuryl alcohol is converted to the terminal methyl group of levulinic acid has recendy been elucidated (53). [Pg.79]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Hydrolysis of cationic polyacrylamides prepared from copolymeri2ation of acrylamide and cationic ester monomer can occur under very mild conditions. A substantial loss in cationicity can cause a significant loss in performance in many apphcations. Copolymers [69418-26-4] of acrylamide and acryloxyethyltrimethylammonium chloride [44992-01 -0] CgH gN02(Cl), for instance, lose cationicity rapidly at alkaline pH (37). [Pg.140]

Under conditions of extreme acidity or alkalinity, acryhc ester polymers can be made to hydroly2e to poly(acryhc acid) or an acid salt and the corresponding alcohol. However, acryhc polymers and copolymers have a greater resistance to both acidic and alkaline hydrolysis than competitive poly(vinyl acetate) and vinyl acetate copolymers. Even poly(methyl acrylate), the most readily hydroly2ed polymer of the series, is more resistant to alkah than poly(vinyl acetate) (57). Butyl acrylate copolymers are more hydrolytically stable than ethyl acrylate copolymers (58). [Pg.164]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

The principal monomer is acrylamide [79-06-17, where R = H and R = NH2, made by the hydrolysis of acrylonitrile. The homopolymer [9003-05-8] of acrylamide, which in theory has no electrical charge, has some use as a flocculant however, the majority of acrylamide-based flocculants are copolymers with acryHc monomers containing charged functional groups, such as those shown in Figure 1, or polymers containing functional groups formed by modification of acrylamide homopolymers or copolymers (Fig. 2). The chemistry of polyacrylamides has been reviewed by several authors (18—20) (see... [Pg.32]

Displacement reactions with oxygen nucleophiles are of potential commercial interest. Alkaline hydrolysis provides 2-fluoro-6-hydroxypyridine [55758-32-2], a precursor to 6-fluoropyridyl phosphoms ester insecticides (410—412). Other oxygen nucleophiles such as bisphenol A and hydroquinone have been used to form aryl—pyridine copolymers (413). [Pg.336]

Gross-Linking. A variety of PE resins, after their synthesis, can be modified by cross-linking with peroxides, hydrolysis of silane-grafted polymers, ionic bonding of chain carboxyl groups (ionomers), chlorination, graft copolymerization, hydrolysis of vinyl acetate copolymers, and other reactions. [Pg.369]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

The most commonly used polymers are partially hydrolyzed polyacrylamides (32). The optimum degree of hydrolysis depends on the apphcation, injection water composition, and reservoir conditions (33,34). More salt-tolerant acrylamide copolymers may permit this technology in higher salinity injection water (35). Eield apphcations of cross-linked xanthan gum have also been reported (36). [Pg.190]

Acrylamide copolymers designed to reduce undesired amide group hydrolysis, increase thermal stability, and improve solubility in saline media have been studied for EOR appHcations (121—128). These polymers stiH tend to be shear sensitive. Most copolymers evaluated for EOR have been random copolymers. However, block copolymers of acrylamide and AMPS also have utiHty (129). [Pg.192]

Vinyl resins ie, copolymers of vinyl chloride and vinyl acetate which contain hydroxyl groups from the partial hydrolysis of vinyl acetate and/or carboxyl groups, eg, from copolymerized maleic anhydride, may be formulated with alkyd resins to improve their appHcation properties and adhesion. The blends are primarily used in making marine top-coat paints. [Pg.42]

Monomethylacryloyl and vinylbenzyl derivatives of sucrose have been prepared as intermediates for polymers, and preparation of a range of copolymers of styrene and O-methjiacryloylsucrose has been described (114). Synthesis of 4- and 6-0-acryloylsucrose has been achieved by acid-catalyzed hydrolysis of 4,6-0-(l-ethoxy-2-propenyhdene)sucrose (76). These acryloyl derivatives have been polymerized and copolymerized with styrene (qv). [Pg.37]

In contrast to other polymers the resistance to water permeation is low due to the hydrolysis of the poly(vinyl acetate) (163,164). Ethylene copolymers have been developed which have improved water resistance and waterproofness. The polymer can be used in the latex form or in a spray-dried form which can be preblended in with the cement (qv) in the proper proportion. The compressive and tensile strength of concrete is improved by addition of PVAc emulsions to the water before mixing. A polymer-soHds-to-total-soHds ratio of ca 10 90 is best. The emulsions also aid adhesion between new and old concrete when patching or resurfacing. [Pg.471]

The physical piopeities of poly(vinyl alcohol) aie highly coiielated with the method of piepaiation. The final piopeities are affected by the polymerization conditions of the parent poly(vinyl acetate), the hydrolysis conditions, drying, and grinding. Further, the term poly(vinyl alcohol) refers to an array of products that can be considered copolymers of vinyl acetate and vinyl alcohol. [Pg.475]

The most successful of these products contain high ratios of VP to DMAEMA and are partially quatemized with diethyl sulfate (Polyquaternium 11) (142—144). They afford very hard, clear, lustrous, nonflaking films on the hair that are easily removed by shampooing. More recendy, copolymers with methyl vinyl imidazoliiim chloride (Polyquaternium 16) (145) or MAPTAC (methacrylamidopropyltrimethyl ammonium chloride) (Polyquaternium 28) have been introduced. Replacement of the ester group in DMAEMA with an amide analog as in Polyquaternium 28 results in a resin resistant to alkaline hydrolysis and hence greater utility in alkaline permanent-wave and bleach formulations (see Quaternary ammonium compounds). [Pg.533]

So-called pure acryUc latexes are employed for maximum durabiUty as required, for example, in high performance exterior latex paints. On the other hand, interior flat wall latex paints do not need the high resistance to exterior exposure and hydrolysis. The most widely used latexes for this appHcation are vinyl acetate copolymer latexes such as vinyl acetate/butyl acrylate (2-propenoic acid butyl ester) [141-32-2] copolymers having just sufficient... [Pg.339]

Postpolymerization Reactions. Copolymers can also be formed by postpolymetization reactions on polymers. A well-known example is the partial hydrolysis of polyacrjiamide (PAM) to hydrolyzed polyacrylamide (HPAM). The product becomes a random copolymer of acrylamide and acryUc acid (44) (see Acrylamide polya rs). [Pg.182]

The first, and still widely used, polymer-supported ester is formed from an amino acid and a chloromethylated copolymer of styrene-divinylbenzene. Originally it was cleaved by basic hydrolysis (2 N NaOH, FtOH, 25°, 1 h). Subsequently, it has been cleaved by hydrogenolysis (H2/Pd-C, DMF, 40°, 60 psi, 24 h, 71% yield), and by HF, which concurrently removes many amine protective groups. Monoesterification of a symmetrical dicarboxylic acid chloride can be effected by reaction with a hydroxymethyl copolymer of styrene-divinylbenzene to give an ester a mono salt of a diacid was converted into a dibenzyl polymer. ... [Pg.260]

The stability of the copolymers may be enhanced by alkaline hydrolysis following polymerisation to remove oxymethyl end-groups and replace them with the more stable oxyethyl groups. [Pg.535]

PAS-2 is particularly notable for its high level of chemical and hydrolysis resistance in addition to a Tg of 215°C. Some typical properties of the copolymers PAS-1 and PAS-2 are given in Table 21.2 in comparison with data for PPS. [Pg.596]

Surface active agents are important components of foam formulations. They decrease the surface tension of the system and facilitate the dispersion of water in the hydrophobic resin. In addition they can aid nucleation, stabilise the foam and control cell structure. A wide range of such agents, both ionic and non-ionic, has been used at various times but the success of the one-shot process has been due in no small measure to the development of the water-soluble polyether siloxanes. These are either block or graft copolymers of a polydimethylsiloxane with a polyalkylene oxide (the latter usually an ethylene oxide-propylene oxide copolymer). Since these materials are susceptible to hydrolysis they should be used within a few days of mixing with water. [Pg.797]

Group of plastics composed of resins derived from the hydrolysis of polyvinyl esters or copolymers of vinyl esters. [Pg.141]

Radical copolymerization is used in the manufacturing of random copolymers of acrylamide with vinyl monomers. Anionic copolymers are obtained by copolymerization of acrylamide with acrylic, methacrylic, maleic, fu-maric, styrenesulfonic, 2-acrylamide-2-methylpro-panesulfonic acids and its salts, etc., as well as by hydrolysis and sulfomethylation of polyacrylamide Cationic copolymers are obtained by copolymerization of acrylamide with jV-dialkylaminoalkyl acrylates and methacrylates, l,2-dimethyl-5-vinylpyridinum sulfate, etc. or by postreactions of polyacrylamide (the Mannich reaction and Hofmann degradation). Nonionic copolymers are obtained by copolymerization of acrylamide with acrylates, methacrylates, styrene derivatives, acrylonitrile, etc. Copolymerization methods are the same as the polymerization of acrylamide. [Pg.69]


See other pages where Hydrolysis copolymers is mentioned: [Pg.605]    [Pg.414]    [Pg.605]    [Pg.414]    [Pg.316]    [Pg.58]    [Pg.134]    [Pg.181]    [Pg.515]    [Pg.262]    [Pg.192]    [Pg.353]    [Pg.191]    [Pg.260]    [Pg.71]    [Pg.463]    [Pg.338]    [Pg.364]    [Pg.541]    [Pg.879]    [Pg.881]    [Pg.12]    [Pg.167]   
See also in sourсe #XX -- [ Pg.5 , Pg.8 , Pg.82 ]

See also in sourсe #XX -- [ Pg.105 , Pg.106 ]




SEARCH



Hydrolysis/-butyl methacrylate-containing block copolymers

Maleic anhydride copolymers base hydrolysis

Maleic anhydride copolymers hydrolysis

© 2024 chempedia.info