Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis amide groups

Acrylamide copolymers designed to reduce undesired amide group hydrolysis, increase thermal stability, and improve solubility in saline media have been studied for EOR appHcations (121—128). These polymers stiH tend to be shear sensitive. Most copolymers evaluated for EOR have been random copolymers. However, block copolymers of acrylamide and AMPS also have utiHty (129). [Pg.192]

Acrylamide copolymers designed to reduce undesired amide group hydrolysis, increase thermal stability, and improve solubility in saline media have been synthesized and studied for EOR applications. These polymers still tend to be shear sensitive. Acrylamide comonomers that have been used include 2-acrylamido-2-methylpropane sulfonate, abbreviated AMPS, (1,321-324), 2-sulfo-ethylmethacrylate (325,326), diacetone acrylamide (324, 326), and vinylpyrrolidinone (327,328). Acrylamide terpolymers include those with sodium acrylate and acrylamido-N-dodecyl-N-butyl sulfonate (329), with AMPS and N,N-dimethylacrylamide (330), with AMPS and N-vinylpyrrolidinone (331), and with sodium acrylate and sodium methacrylate (332). While most copolymers tested have been random copolymers, block copolymers of acrylamide and AMPS also have utility in this application (333). [Pg.37]

Korte WD and Shih ML (1993). Degradation of three related bis(pyridinium)aldoximes in aqueous solutions at high concentrations Examples of unexpectedly rapid amide group hydrolysis. J Pharm Sci, 82, 782-786. [Pg.325]

Hydrolyzed Polyacrylamide. HPAM (6) can be prepared by a free-radical process ia which acrylamide is copolymerized with incremental amounts of acryUc acid or through homopolymerization of acrylamide followed by hydrolysis of some of the amide groups to carboxylate units. [Pg.317]

The reaction with sodium sulfite or bisulfite (5,11) to yield sodium-P-sulfopropionamide [19298-89-6] (C3H7N04S-Na) is very useful since it can be used as a scavenger for acrylamide monomer. The reaction proceeds very rapidly even at room temperature, and the product has low toxicity. Reactions with phosphines and phosphine oxides have been studied (12), and the products are potentially useful because of thek fire retardant properties. Reactions with sulfide and dithiocarbamates proceed readily but have no appHcations (5). However, the reaction with mercaptide ions has been used for analytical purposes (13)). Water reacts with the amide group (5) to form hydrolysis products, and other hydroxy compounds, such as alcohols and phenols, react readily to form ether compounds. Primary aUphatic alcohols are the most reactive and the reactions are compHcated by partial hydrolysis of the amide groups by any water present. [Pg.133]

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

It is generally accepted that transamidation is not a concerted reaction, but occurs through the attack of a free end on the amide group via aminolysis (eg, eq. 4) or acidolysis (eg, eq. 3) (65). Besides those ends always present, new ends are formed by degradation processes, especially hydrolysis (eq. 5), through which the amide groups are in dynamic equiUbrium with the acid and amine ends. [Pg.225]

Nitrile Group. Hydrolysis of the nitrile group proceeds through the amide to the corresponding carboxyUc acid. Because cyanohydrins are unstable at high pH, this hydrolysis must be cataly2ed by acids. In cases where amide hydrolysis is slower than nitrile hydrolysis, the amide may be isolated. [Pg.411]

This compound undergoes hydrolysis of the amide group intramolecularly catalyzed by the neighboring carboxylic acid group. The rate equation, in the pH range 1—... [Pg.282]

Acidic hydrolysis of the amide group at pH 4.5 is a very slow reaction. Strong acidic conditions leads to a progressive insolubilization of the reaction product because of formation of cyclic imide structures ... [Pg.64]

Conversion of Amides into Carboxylic Acids Hydrolysis Amides undergo hydrolysis to yield carboxylic acids plus ammonia or an amine on heating in either aqueous acid or aqueous base. The conditions required for amide hydrolysis are more severe than those required for the hydrolysis of add chlorides or esters but the mechanisms are similar. Acidic hydrolysis reaction occurs by nucleophilic addition of water to the protonated amide, followed by transfer of a proton from oxygen to nitrogen to make the nitrogen a better leaving group and subsequent elimination. The steps are reversible, with the equilibrium shifted toward product by protonation of NH3 in the final step. [Pg.814]

When a carbonyl group is bonded to a substituent group that can potentially depart as a Lewis base, addition of a nucleophile to the carbonyl carbon leads to elimination and the regeneration of a carbon-oxygen double bond. Esters undergo hydrolysis with alkali hydroxides to form alkali metal salts of carboxylic acids and alcohols. Amides undergo hydrolysis with mineral acids to form carboxylic acids and amine salts. Carbamates undergo alkaline hydrolysis to form amines, carbon dioxide, and alcohols. [Pg.534]

The cyano group is at the carboxylic acid oxidation level, so nitriles are potential precursors of primary amides. Partial hydrolysis is sometimes possible.146... [Pg.256]

Asymmetric hydrogenation of a cyclic enamide (Approach B) had very sparse literature precedents [7]. It should also be noted that preparation of these cyclic imines and enamides is not straightforward. The best method for the synthesis of cyclic imines involves C-acylation of the inexpensive N-vinylpyrrolidin-2-one followed by a relatively harsh treatment with refluxing 6M aqueous HC1, which accomplishes deprotection of the vinyl group, hydrolysis of the amide, and decarboxylation (Scheme 8.6) [8]. [Pg.227]

The zinc complex of a tripodal N2S20 pentadentate ligand undergoes amide alcoholysis of a coordinated amide group.893 Examples of amide hydrolysis are known for other ligand systems.894... [Pg.1228]

Hydrolysis of amide groups to carboxylate is a major cause of instability in acrylamide-based polymers, especially at alkaline pH and high temperatures. The performance of oil-recovery polymers may be adversely affected by excessive hydrolysis, which can promote precipitation from sea water solution. This work has studied the effects of the sodium salts of acrylic acid and AMPS, 2-acrylamido-2-methylpropanesulfonic acid, as comonomers, on the rate of hydrolysis of polyacrylamides in alkaline solution at high temperatures. Copolymers were prepared containing from 0-53 mole % of the anionic comonomers, and hydrolyzed in aqueous solution at pH 8.5 at 90°C, 108°C and 120°C. The extent of hydrolysis was measured by a conductometric method, analyzing for the total carboxylate content. [Pg.107]

The hydrolysis of polyacrylamide and acrylamide/sodium acrylate copolymers has been extensively studied [1,2,3,5,6,7,8,-9,10], in relatively strongly alkaline conditions, above pH 12. These studies demonstrated that the hydrolysis of the amide groups is hydroxide-catalyzed and that neighboring ionized carboxyl groups in the polymer inhibit the hydrolysis by electrostatic repulsion of the hydroxide ions. Senju et al. [6] showed that at temperatures up to 100°C, there is an apparent limit to the extent of hydrolysis of polacrylamide when approximately 60% of the amide groups are hydrolyzed. [Pg.108]

The purpose of the alkali is to convert the insoluble free naphthol into its colloidally soluble sodium salt. An excess of sodium hydroxide is generally needed but too much will tend to promote hydrolysis of the amide groups present in most azoic coupling components. The actual amount required varies with the naphthol and processing conditions the manufacturer s detailed literature must be consulted. [Pg.357]


See other pages where Hydrolysis amide groups is mentioned: [Pg.654]    [Pg.113]    [Pg.79]    [Pg.654]    [Pg.113]    [Pg.79]    [Pg.316]    [Pg.317]    [Pg.140]    [Pg.140]    [Pg.140]    [Pg.239]    [Pg.244]    [Pg.62]    [Pg.64]    [Pg.133]    [Pg.24]    [Pg.256]    [Pg.293]    [Pg.298]    [Pg.318]    [Pg.320]    [Pg.107]    [Pg.113]    [Pg.114]    [Pg.116]    [Pg.118]    [Pg.160]    [Pg.40]    [Pg.62]    [Pg.51]    [Pg.161]    [Pg.987]    [Pg.806]   
See also in sourсe #XX -- [ Pg.217 , Pg.266 ]




SEARCH



Amidation/hydrolysis

Amide groups

Amide hydrolysis, leaving groups

Amides hydrolysis

Leaving group amide hydrolysis reactions

© 2024 chempedia.info