Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons steam cracking

In the United States, Europe, and Japan, DCPD streams of 70—95 wt% purity are available. Estimates of recoverable DCPD production capacity in the United States for 1990 for all grades of DCPD is >127, 000 metric tons (39) and in Europe is 48,000 metric tons (40). The vast majority of this production is from hydrocarbon steam-cracking operations. Based on the total operations, more CPD is produced than indicated above, but because of the relatively small quantities available at a single location, much of the cyclopentadiene caimot be recovered profitably. Important producers in the U.S. are Dow, Exxon, LyondeU, SheU, and Texm ark in Europe, Dow and SheU and in Japan, Nippon Zeon (40). [Pg.432]

In quite a different application, a novel approach for producing olefins via a hydrocarbon-steam cracking process, without the use of a catalyst, was demonstrated to benefit from the use of a honeycomb monolithic catalytic reactor [28]. A typical problem associated with cracking processes of this type is maintaining the appropriate combination of heat transfer and residence time, which, if not balanced, will lead to either poor conversion... [Pg.204]

More than 90% of today s petrochemicals are produced from refineiy products. Most are based on the use of C2-C4 olefins and aromatics finm hydrocarbon steam cracking units, which are even more closely linked to refineries. In North America, the feedstock for steam cracker units have generally been ethane, propane, or LPG. As a result, most of the propylene and aromatics have been provided by FCC units and catalytic reformers. In maity other parts of the world where naphtha feed has been more readily available, suppUes of propylene and aromatics have been produced directly by steam cracking. When necessary, the catalytic dehydrogenation of paraffins or dealkylation of toluene can balance the supply of olefins or benzene. In Table 7.2 some of the catalytic processes that convert olefins and benzene from a steam cracker into basic petrochemicals for the modem chemical industry are shown. [Pg.263]

Pyrolysis gasoline is a by-product of the steam cracking of hydrocarbon feeds in ethylene crackers (see Ethylene). Pyrolysis gasoline typically contains about 50—70 wt % aromatics, of which roughly 50% is benzene, 30% is toluene, and 20% is mixed xylenes (which includes EB). [Pg.410]

ElexibiHty allows the operator to pick and choose the most attractive feedstock available at a given point in time. The steam-cracking process produces not only ethylene, but other products as weU, such as propylene, butadiene, butylenes (a mixture of monounsaturated C-4 hydrocarbons), aromatics, etc. With ethane feedstock, only minimal quantities of other products ate produced. As the feedstocks become heavier (ie, as measured by higher molecular weights and boiling points), increasing quantities of other products are produced. The values of these other coproduced products affect the economic attractiveness and hence the choice of feedstock. [Pg.171]

Petroleum resins are low molecular weight thermoplastic hydrocarbon resins synthesized from steam cracked petroleum distillates. These resins are differentiated from higher molecular weight polymers such as polyethylene and polypropylene, which are produced from essentially pure monomers. Petroleum resin feedstocks are composed of various reactive and nonreactive aliphatic and aromatic components. The resins are usually classified as C-5... [Pg.351]

The feedstocks used ia the production of petroleum resias are obtaiaed mainly from the low pressure vapor-phase cracking (steam cracking) and subsequent fractionation of petroleum distillates ranging from light naphthas to gas oil fractions, which typically boil ia the 20—450°C range (16). Obtaiaed from this process are feedstreams composed of atiphatic, aromatic, and cycloatiphatic olefins and diolefins, which are subsequently polymerized to yield resias of various compositioas and physical properties. Typically, feedstocks are divided iato atiphatic, cycloatiphatic, and aromatic streams. Table 2 illustrates the predominant olefinic hydrocarbons obtained from steam cracking processes for petroleum resia synthesis (18). [Pg.352]

Cycloaliphatic Diene CPD—DCPD. Cycloatiphatic diene-based hydrocarbon resias are typically produced from the thermal or catalytic polymerization of cyclopeatadieae (CPD) and dicyclopentadiene (DCPD). Upon controlled heating, CPD may be dimerized to DCPD or cracked back to the monomer. The heat of cracking for DCPD is 24.6 kJ / mol (5.88 kcal/mol). In steam cracking processes, CPD is removed from C-5 and... [Pg.352]

Gyclopentadiene/Dicyclopentadiene-Based Petroleum Resins. 1,3-Cyclopentadiene (CPD) is just one of the numerous compounds produced by the steam cracking of petroleum distillates. Due to the fact that DCPD is polymerized relatively easily under thermal conditions without added catalyst, resins produced from cycloaHphatic dienes have become a significant focus of the hydrocarbon resin industry. [Pg.354]

The pattern of commercial production of 1,3-butadiene parallels the overall development of the petrochemical industry. Since its discovery via pyrolysis of various organic materials, butadiene has been manufactured from acetylene as weU as ethanol, both via butanediols (1,3- and 1,4-) as intermediates (see Acetylene-DERIVED chemicals). On a global basis, the importance of these processes has decreased substantially because of the increasing production of butadiene from petroleum sources. China and India stiU convert ethanol to butadiene using the two-step process while Poland and the former USSR use a one-step process (229,230). In the past butadiene also was produced by the dehydrogenation of / -butane and oxydehydrogenation of / -butenes. However, butadiene is now primarily produced as a by-product in the steam cracking of hydrocarbon streams to produce ethylene. Except under market dislocation situations, butadiene is almost exclusively manufactured by this process in the United States, Western Europe, and Japan. [Pg.347]

FIG. Noncatalytic gas phase reactions, a) Steam cracking of light hydrocarbons in a tnhnlar fired heater, (h ) Pehhle heater for the fixation of nitrogen from... [Pg.2100]

Separation of raw feedstock. The pyrolysis of petroleum feedstream is carried out at 650-900°C at normal pressure in the presence of steam. The so-called steam-cracking process involves carbon-carbon splitting of saturated, unsaturated and aromatic molecules. The following steam-cracker fractions are used as raw materials to produce hydrocarbon resins. [Pg.606]

Higher molecular weight hydrocarbons present in natural gases are important fuels as well as chemical feedstocks and are normally recovered as natural gas liquids. For example, ethane may be separated for use as a feedstock for steam cracking for the production of ethylene. Propane and butane are recovered from natural gas and sold as liquefied petroleum gas (LPG). Before natural gas is used it must be processed or treated to remove the impurities and to recover the heavier hydrocarbons (heavier than methane). The 1998 U.S. gas consumption was approximately 22.5 trillion ft. ... [Pg.2]

The most important olefins used for the production of petrochemicals are ethylene, propylene, the butylenes, and isoprene. These olefins are usually coproduced with ethylene by steam cracking ethane, LPG, liquid petroleum fractions, and residues. Olefins are characterized by their higher reactivities compared to paraffinic hydrocarbons. They can easily react with inexpensive reagents such as water, oxygen, hydrochloric acid, and chlorine to form valuable chemicals. Olefins can even add to themselves to produce important polymers such as polyethylene and polypropylene. Ethylene is the most important olefin for producing petrochemicals, and therefore, many sources have been sought for its production. The following discusses briefly, the properties of these olefmic intermediates. [Pg.32]

Ethylene is a constituent of refinery gases, especially those produced from catalytic cracking units. The main source for ethylene is the steam cracking of hydrocarbons (Chapter 3). Table 2-2 shows the world ethylene production by source until the year 2000. U.S. production of ethylene was approximately 51 billion lbs in 1997. ... [Pg.33]

Like ethylene, propylene (propene) is a reactive alkene that can be obtained from refinery gas streams, especially those from cracking processes. The main source of propylene, however, is steam cracking of hydrocarbons, where it is coproduced with ethylene. There is no special process for propylene production except the dehydrogenation of propane. [Pg.33]

The most important olefins and diolefins used to manufacture petrochemicals are ethylene, propylene, butylenes, and hutadiene. Butadiene, a conjugated diolefin, is normally coproduced with C2-C4 olefins from different cracking processes. Separation of these olefins from catalytic and thermal cracking gas streams could he achieved using physical and chemical separation methods. However, the petrochemical demand for olefins is much greater than the amounts these operations produce. Most olefins and hutadienes are produced hy steam cracking hydrocarbons. [Pg.91]

The main route for producing light olefins, especially ethylene, is the steam cracking of hydrocarbons. The feedstocks for steam cracking units range from light paraffinic hydrocarbon gases to various petroleum fractions and residues. The properties of these feedstocks are discussed in Chapter 2. [Pg.91]

Propene and 1-butene, respectively, are produced in this free radical reaction. Higher hydrocarbons found in steam cracking products are probably formed through similar reactions. [Pg.92]

In Europe naphtha is the preferred feedstock for the production of synthesis gas, which is used to synthesize methanol and ammonia (Chapter 4). Another important role for naphtha is its use as a feedstock for steam cracking units for light olefins production (Chapter 3). Heavy naphtha, on the other hand, is a major feedstock for catalytic reforming. The product reformate containing a high percentage of Ce-Cg aromatic hydrocarbons is used to make gasoline. Reformates are also extracted to separate the aromatics as intermediates for petrochemicals. [Pg.182]

Easily produced from any hydrocarbon source through steam cracking and in high yields. [Pg.188]

Butadiene is mainly obtained as a byproduct from the steam cracking of hydrocarbons and from catalytic cracking. These two sources account for over 90% of butadiene demand. The remainder comes from dehydrogenation of n-butane or n-butene streams (Chapter 3). The 1998 U.S. production of butadiene was approximately 4 billion pounds, and it was the 36th highest-volume chemical. Worldwide butadiene capacity was nearly 20 billion pounds. [Pg.256]


See other pages where Hydrocarbons steam cracking is mentioned: [Pg.171]    [Pg.354]    [Pg.354]    [Pg.125]    [Pg.42]    [Pg.340]    [Pg.347]    [Pg.347]    [Pg.365]    [Pg.432]    [Pg.432]    [Pg.54]    [Pg.99]    [Pg.89]    [Pg.103]    [Pg.628]    [Pg.91]    [Pg.95]    [Pg.96]    [Pg.152]    [Pg.169]    [Pg.175]    [Pg.92]    [Pg.225]    [Pg.7]    [Pg.253]    [Pg.111]   
See also in sourсe #XX -- [ Pg.2461 ]




SEARCH



Hydrocarbons, cracking

Olefinic hydrocarbons steam cracking process

Steam cracking

© 2024 chempedia.info