Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion micelles

The difference between well-known SCF antisolvent techniques such as GAS, PCA, and SEDS usually can be attributed to the specific nozzle mixing (or dispersing) technique involved. Enhanced mass and heat transfer can also be achieved by using mechanical and ultrasonic mixers and ultrafast jet expansion techniques. There are new developments for particle formation by means of dispersed systems such as emulsions, micelles, colloids, and polymer matrixes. It should be emphasized that all these processes involve the same fundamental aspects of mass and heat transfer phenomena between an SCF and a subcritical phase. Clearly the ultimate goal of all SCF particle technologies is to achieve predictable, consistent, and economical production of fine pharmaceuticals or chemicals. This is possible only on the basis of comprehensive mechanistic understanding and well-developed scale-up principles. [Pg.153]

Older methods based on solubility changes upon complexation, or on partition coefficients between aqueous solutions and hydrophobic solvents, have been shown to lead to gross errors as compared to spectroscopic techniques (40) that are also less sensitive to the formation of emulsions, micelles, and so on. The traditional X-ray analysis of inclusion compounds is of limited significance for establishing complexation between lipophilic substrates and macrocyclic host, particularly in aqueous solution. The essential hydrophobic driving force for complexation, of course, is nonexistent in the crystal. The future development of NMR methods including shielding calculations and measurements of intermolecular nuclear Overhauser effects is expected to provide the most reliable information on intercavity inclusion complexes in solution as the basis for catalytic applications. [Pg.449]

Microemulsions are prepared by the spontaneous anulsilication method (phase titration method) and can be depicted with the help of phase diagrams. Construction of phase diagram is a useful approach to study the complex series of interactions that can occur when different components are mixed. Microemulsions are formed along with varions association structures (including emulsion, micelles, lamellar, hexagonal, cubic, and varions gels and oily dispersion), depending on the chemical composition and concentration of each component. [Pg.256]

With surfactants in water, the decrease in surface tension at a lower concentration is accompanied by the adsorption of surfactants at an interface up to the point of CMC. Beyond this CMC, the surfactants form the micelles or the aggregates of surfactants. Whereas adsorption helps in making suspensions, dispersions, and emulsions, micellization helps in solubilization. [Pg.450]

Liquid interfaces with monolayers play an important role in many diverse industrial processes, creating colloidal dispersions such as emulsions, micelles or liposomes. When two monolayers come into contact, bilayers can be synthesized. Phospholipid bilayers form liposomes, which are used as vehicles for drug delivery, in cosmetics and in gene therapy [1]. [Pg.80]

Aggregate structures such as micelles can be used to deliver organic or aqueous media. Micelles can easily accommodate oils in their interior. As the micelles swell with oil in their interior volume, they form emulsions. Micelles can also be inverted in organic solvents (hydrophobic portions forming the outer perimeter) to form reverse micelles that can accommodate small droplets of water to form oil-based emulsions. Many prodncts containing water and oil are produced in emulsified form. [Pg.6]

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

The energetics and kinetics of film formation appear to be especially important when two or more solutes are present, since now the matter of monolayer penetration or complex formation enters the picture (see Section IV-7). Schul-man and co-workers [77, 78], in particular, noted that especially stable emulsions result when the adsorbed film of surfactant material forms strong penetration complexes with a species present in the oil phase. The stabilizing effect of such mixed films may lie in their slow desorption or elevated viscosity. The dynamic effects of surfactant transport have been investigated by Shah and coworkers [22] who show the correlation between micellar lifetime and droplet size. More stable micelles are unable to rapidly transport surfactant from the bulk to the surface, and hence they support emulsions containing larger droplets. [Pg.505]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

The production of organic polymeric particles in tire size range of 30-300 nm by emulsion polymerization has become an important teclmological application of surfactants and micelles. Emulsion polymerization is very well and extensively reviewed in many monographs and texts [67, 68], but we want to briefly illustrated tire role of micelles in tliis important process. [Pg.2596]

Figure C2.3.11 Key surfactant stmctures (not to scale) in emulsion polymerization micelles containing monomer and oligomer, growing polymer particle stabilized by surfactant and an emulsion droplet of monomer (reservoir) also coated with surfactant. Adapted from figure 4-1 in [67],... Figure C2.3.11 Key surfactant stmctures (not to scale) in emulsion polymerization micelles containing monomer and oligomer, growing polymer particle stabilized by surfactant and an emulsion droplet of monomer (reservoir) also coated with surfactant. Adapted from figure 4-1 in [67],...
Although the remainder of this contribution will discuss suspensions only, much of the theory and experimental approaches are applicable to emulsions as well (see [2] for a review). Some other colloidal systems are treated elsewhere in this volume. Polymer solutions are an important class—see section C2.1. For surfactant micelles, see section C2.3. The special properties of certain particles at the lower end of the colloidal size range are discussed in section C2.17. [Pg.2667]

The surfactant is initially distributed through three different locations dissolved as individual molecules or ions in the aqueous phase, at the surface of the monomer drops, and as micelles. The latter category holds most of the surfactant. Likewise, the monomer is located in three places. Some monomer is present as individual molecules dissolved in the water. Some monomer diffuses into the oily interior of the micelle, where its concentration is much greater than in the aqueous phase. This process is called solubilization. The third site of monomer is in the dispersed droplets themselves. Most of the monomer is located in the latter, since these drops are much larger, although far less abundant, than the micelles. Figure 6.10 is a schematic illustration of this state of affairs during emulsion polymerization. [Pg.399]

In an emulsion polymerization experiment at 60°C the number of micelles per unit volume is 5.0 X 10 hter and the monomer concentration in the micelle... [Pg.401]

In this example the number of micelles per unit volume is exactly twice the stationary-state free-radical concentration hence the rates are identical. Although the numbers were chosen in this example to produce this result, neither N nor M are unreasonable values in actual emulsion polymerizations. [Pg.402]

Sta.g C I Pa.rtlcIeNucIea.tlon, At the start of a typical emulsion polymerization the reaction mass consists of an aqueous phase containing smaU amounts of soluble monomer, smaU spherical micelles, and much larger monomer droplets. The micelles are typicaUy 5—30-nm in diameter and are saturated with monomer emulsified by the surfactant. The monomer droplets are larger, 1,000—10,000-nm in diameter, and are also stabilized by the surfactant. [Pg.23]

Soap. A critical ingredient for emulsion polymerization is the soap (qv), which performs a number of key roles, including production of oil (monomer) in water emulsion, provision of the loci for polymerization (micelle), stabilization of the latex particle, and impartation of characteristics to the finished polymer. [Pg.494]

Emulsion Polymerization. Emulsion polymerization takes place in a soap micelle where a small amount of monomer dissolves in the micelle. The initiator is water-soluble. Polymerization takes place when the radical enters the monomer-swollen micelle (91,92). Additional monomer is supphed by diffusion through the water phase. Termination takes place in the growing micelle by the usual radical-radical interactions. A theory for tme emulsion polymerization postulates that the rate is proportional to the number of particles [N. N depends on the 0.6 power of the soap concentration [S] and the 0.4 power of initiator concentration [i] the average number of radicals per particle is 0.5 (93). [Pg.502]

Asphalt emulsions are dispersioas of asphalt ia water that are stabilized iato micelles with either an anionic or cationic surfactant. To manufacture an emulsion, hot asphalt is mixed with water and surfactant ia a coUoid mill that produces very small particles of asphalt oa the order of 3 p.m. These small particles of asphalt are preveated from agglomerating iato larger particles by a coatiag of water that is held ia place by the surfactant. If the asphalt particles agglomerate, they could settle out of the emulsion. The decision on whether a cationic or anionic surfactant is used depends on the appHcation. Cationic stabilized emulsions are broken, ie, have the asphalt settle out, by contact with metal or siHcate materials as weU as by evaporation of the water. Siace most rocks are siHcate-based materials, cationic emulsions are commonly used for subbase stabilization and other similar appHcations. In contrast, anionic emulsions only set or break by water evaporation thus an anionic emulsion would be used to make a cold patch compound. [Pg.320]

Emulsion Polymerization. In this method, polymerization is initiated by a water-soluble catalyst, eg, a persulfate or a redox system, within the micelles formed by an emulsifying agent (11). The choice of the emulsifier is important because acrylates are readily hydrolyzed under basic conditions (11). As a consequence, the commonly used salts of fatty acids (soaps) are preferably substituted by salts of long-chain sulfonic acids, since they operate well under neutral and acid conditions (12). After polymerization is complete the excess monomer is steam-stripped, and the polymer is coagulated with a salt solution the cmmbs are washed, dried, and finally baled. [Pg.474]

The reaction is considerably modified if the so-called emulsion polymerisation technique is used. In this process the reaction mixture contains about 5% soap and a water-soluble initiator system. The monomer, water, initiator, soap and other ingredients are stirred in the reaction vessel. The monomer forms into droplets which are emulsified by some of the soap molecules. Excess soap aggregates into micelles, of about 100 molecules, in which the polar ends of the soap molecules are turned outwards towards the water whilst the non-polar hydrocarbon ends are turned inwards (Figure 2.17). [Pg.28]

In the case of emulsion polymerisation, half the micelles will be reacting at any one time. The conversion rate is thus virtually independent of radical concentration (within limits) but dependent on the number of micelles (or swollen polymer particles). [Pg.33]

An increase in the rate of radical production in emulsion polymerisation will reduce the molecular weight since it will increase the frequency of termination. An increase in the number of particles will, however, reduce the rate of entry of radicals into a specific micelle and increase molecular weight. Thus at constant initiator concentration and temperature an increase in micelles (in effect in soap concentration) will lead to an increase in molecular weight and in rate of conversion. [Pg.33]

Suspension polymerization produces beads of plastic for styrene, methyl methacrviaie. viny l chloride, and vinyl acetate production. The monomer, in which the catalyst must be soluble, is maintained in droplet fonn suspended in water by agitation in the presence of a stabilizer such as gelatin each droplet of monomer undergoes bulk polymerization. In emulsion polymerization, ihe monomer is dispersed in water by means of a surfactant to form tiny particles held in suspension I micellcsK The monomer enters the hydrocarbon part of the micelles for polymerization by a... [Pg.277]


See other pages where Emulsion micelles is mentioned: [Pg.549]    [Pg.532]    [Pg.250]    [Pg.2914]    [Pg.858]    [Pg.352]    [Pg.328]    [Pg.168]    [Pg.807]    [Pg.9]    [Pg.549]    [Pg.532]    [Pg.250]    [Pg.2914]    [Pg.858]    [Pg.352]    [Pg.328]    [Pg.168]    [Pg.807]    [Pg.9]    [Pg.506]    [Pg.2592]    [Pg.2596]    [Pg.2596]    [Pg.353]    [Pg.401]    [Pg.401]    [Pg.401]    [Pg.278]    [Pg.350]    [Pg.197]    [Pg.538]   
See also in sourсe #XX -- [ Pg.49 , Pg.51 ]




SEARCH



Emulsion critical micelle concentration

Emulsion polymerization micelle

Emulsion reverse micelles

Emulsions Micelles Surfactants

Micelles in emulsion polymerization

Oil-in-Water Emulsion Droplets and Micelles of the Stabilizing Surfactant

Reverse micelles, emulsion process

Surfactants, micelles, emulsions, and foams

Use of Micelles in Emulsion Polymerization

© 2024 chempedia.info