Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immiscible solvent

Micelles are mainly important because they solubilize immiscible solvents in their cores. Nonnal micelles solubilize relatively large quantities of oil or hydrocarbon and reverse micelles solubilize large quantities of water. This is because the headgroups are water loving and the tailgroups are oil loving. These simple solubilization trends produce microemulsions (see section C2.3.11). [Pg.2592]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

The theory of the process can best be illustrated by considering the operation, frequently carried out in the laboratory, of extracting an orgaiuc compound from its aqueous solution with an immiscible solvent. We are concerned here with the distribution law or partition law which, states that if to a system of two liquid layers, made up of two immiscible or slightly miscible components, is added a quantity of a third substance soluble in both layers, then the substance distributes itself between the two layers so that the ratio of the concentration in one solvent to the concentration in the second solvent remains constant at constant temperature. It is assumed that the molecular state of the substance is the same in both solvents. If and Cg are the concentrations in the layers A and B, then, at constant temperature ... [Pg.44]

The above considerations apply also to the removal of a soluble impurity by extraction (or washing) with an immiscible solvent. Several washings with portions of the solvent give better results than a single washing with the total volume of the solvent. [Pg.45]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

Figure 4a represents interfacial polymerisation encapsulation processes in which shell formation occurs at the core material—continuous phase interface due to reactants in each phase diffusing and rapidly reacting there to produce a capsule shell (10,11). The continuous phase normally contains a dispersing agent in order to faciUtate formation of the dispersion. The dispersed core phase encapsulated can be water, or a water-immiscible solvent. The reactant(s) and coreactant(s) in such processes generally are various multihmctional acid chlorides, isocyanates, amines, and alcohols. For water-immiscible core materials, a multihmctional acid chloride, isocyanate or a combination of these reactants, is dissolved in the core and a multihmctional amine(s) or alcohol(s) is dissolved in the aqueous phase used to disperse the core material. For water or water-miscible core materials, the multihmctional amine(s) or alcohol(s) is dissolved in the core and a multihmctional acid chloride(s) or isocyanate(s) is dissolved in the continuous phase. Both cases have been used to produce capsules. [Pg.320]

Because almost any diacid can be leaddy converted to the acid chloride, this reaction is quite versatile and several variations have been developed. In the interfacial polymerization method the reaction occurs at the boundary of two phases one contains a solution of the acid chloride in a water-immiscible solvent and the other is a solution of the diamine in water with an inorganic base and a surfactant (48). In the solution method, only one phase is present, which contains a solution of the diamine and diacid chloride. An organic base is added as an acceptor for the hydrogen chloride produced in the reaction (49). Following any of these methods of preparation, the polymer is exposed to water and the acid chloride end is converted to a carboxyhc acid end. However, it is very difficult to remove all traces of chloride from the polymer, even with repeated washings with a strong base. [Pg.224]

The extraction of metal ions depends on the chelating ability of 8-hydroxyquinoline. Modification of the stmcture can improve its properties, eg, higher solubility in organic solvents (91). The extraction of nickel, cobalt, copper, and zinc from acid sulfates has been accompHshed using 8-hydroxyquinohne in an immiscible solvent (92). In the presence of oximes, halo-substituted 8-hydroxyquinolines have been used to recover copper and zinc from aqueous solutions (93). Dilute solutions of heavy metals such as mercury, ca dmium, copper, lead, and zinc can be purified using quinoline-8-carboxyhc acid adsorbed on various substrates (94). [Pg.393]

If a neutral chelate formed from a ligand such as acetylacetone is sufficiently soluble in water not to precipitate, it may stiH be extracted into an immiscible solvent and thus separated from the other constituents of the water phase. Metal recovery processes (see Mineral recovery and processing), such as from dilute leach dump Hquors, and analytical procedures are based on this phase-transfer process, as with precipitation. Solvent extraction theory and many separation systems have been reviewed (42). [Pg.393]

The most frequendy used technique to shift the equiUbrium toward peptide synthesis is based on differences in solubiUty of starting materials and products. Introduction of suitable apolar protective groups or increase of ionic strength decreases the product solubiUty to an extent that often allows neady quantitative conversions. Another solubiUty-controUed technique is based on introduction of a water-immiscible solvent to give a two-phase system. Products preferentially partition away from the reaction medium thereby shifting the equiUbrium toward peptide synthesis. [Pg.345]

An equihbrium, or theoretical, stage in liquid-liquid extraction as defined earlier is routinely utilized in laboratory procedures. A feed solution is contacted with an immiscible solvent to remove one or more of the solutes from the feed. This can be carried out in a separating funnel, or, preferably, in an agitated vessel that can produce droplets of about 1 mm in diameter. After agitation has stopped and the phases separate, the two clear liquid layers are isolated by decantation. [Pg.1460]

Robbins ( Oquid-Liquid Extraction, in Schweitzer, Handbook of Separation Techniques for Chemical Engineers, McGraw-Hill, New York, 1979, sec. 1.9) reported that most liquid-liquid extrac tion systems can be treated as having either (A) immiscible solvents, (B) partially miscible solvents with a low solute concentration in the extract, or (C) partially miscible solvents with a high solute concentration in the extract. [Pg.1461]

Example 3 Shortcut Calculation Case A Let us solve the problem in Example 2 by using the shortcut calculation method assuming immiscible solvents, case A. [Pg.1462]

Removal of acids from water-immiscible solvents by washing with aqueous alkali, sodium carbonate or sodium bicarbonate. [Pg.6]

Although, for most moderators, the surface of a stationary phase in LC can be considered stable at moderator concentrations above about 5%v/v, the results from the same experiments as those carried out by Purnell and his group could still be considered invalid and, at best, would not lead to unambiguous conclusions. Katz et al. [9] avoided this problem by examining liquid/liquid distribution systems using water as one phase and a series of immiscible solvent mixtures as the other and by measuring absolute distribution coefficients as opposed to retention volumes. [Pg.109]

Relative Solubility of Immiscible Solvents. Many solid materials in solution can be removed by transferring them to a second solvent it is essential that the solvents be mutually insoluble. [Pg.165]

The trihydrate which is obtained in high yields, is relatively insoluble in water, possesses high biological stability and can be obtained by contacting, at a temperature not above 60°C, an acid addition salt of D-(-)-a-aminobenzylpenicillin with an amine in a water-immiscible solvent containing at least 3 mols of water per mol of such penicillin. [Pg.90]

Biphasic catalysis in a liquid-liquid system is an ideal approach through which to combine the advantages of both homogeneous and heterogeneous catalysis. The reaction mixture consists of two immiscible solvents. Only one phase contains the catalyst, allowing easy product separation by simple decantation. The catalyst phase can be recycled without any further treatment. However, the right combination of catalyst, catalyst solvent, and product is crucial for the success of biphasic catalysis [22]. The catalyst solvent has to provide excellent solubility for the catalyst complex without competing with the reaction substrate for the free coordination sites at the catalytic center. [Pg.219]

When the distribution ratio is low, continuous methods of extraction are used. This procedure makes use of a continuous flow of immiscible solvent through the solution if the solvent is volatile, it is recycled by distillation and condensation and is dispersed in the aqueous phase by means of a sintered glass disc or equivalent device. Apparatus is available for effecting such continuous extractions with automatic return of the volatilised solvent (see the Bibliography, Section 9.10). [Pg.173]

A similar reaction occurs with antimony(III) compounds. The determination of antimony(III) in the presence of tartrate is not very satisfactory with an immiscible solvent to assist in indicating the end point amaranth, however, gives excellent results. [Pg.402]

In a two-phase system (Figure 2.5c), the organic (water immiscible) solvent may be used as product extractant. In addition, recirculation of the organic phase can serve to transfer oxygen and to mix the aqueous phase. [Pg.32]

The reaction systems used for modification of triglycerides usually consist of a lipase catalyst and a small amount of water dispersed in a bulk organic phase containing the reactants and, if required, a water immiscible solvent. The small amount of water in the reaction system partitions between the catalyst and the bulk organic phase. [Pg.331]

The isopiestic method is based upon the equality of the solvent chemical potentials and fugacities when solutions of different solutes, but the same solvent, are allowed to come to equilibrium together. A method in which a solute is allowed to establish an equilibrium distribution between two solvents has also been developed to determine activities of the solute, usually based on the Henry s law standard state. In this case, one brings together two immiscible solvents, A and B, adds a solute, and shakes the mixture to obtain two phases that are in equilibrium, a solution of the solute in A with composition. vA, and a solution of the solute in B with composition, a . [Pg.311]

Immiscible solvents like water and oil can be transformed by addition of solubilizers to single-phase solutions. Amphiphilic substances are known as effective solubilizers. Solubilization depends on the HLB of the components that ought to form a single phase and on the kind of solubilizer used. Phosphorus-containing surfactants with their variety of possible molecular structures are solubilizers that can be tailored to the task demanded. [Pg.606]

In conventional solvent extraction, a solute is partitioned between two immiscible solvents. Here, used as an... [Pg.170]


See other pages where Immiscible solvent is mentioned: [Pg.2591]    [Pg.2595]    [Pg.2595]    [Pg.26]    [Pg.379]    [Pg.378]    [Pg.564]    [Pg.2137]    [Pg.2143]    [Pg.6]    [Pg.64]    [Pg.599]    [Pg.323]    [Pg.165]    [Pg.761]    [Pg.258]    [Pg.11]    [Pg.338]    [Pg.204]    [Pg.401]    [Pg.401]    [Pg.17]    [Pg.171]    [Pg.52]    [Pg.75]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.623 ]

See also in sourсe #XX -- [ Pg.777 ]

See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Immiscibility

Immiscibility Immiscible

Immiscible

© 2024 chempedia.info