Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion reverse micelles

Micro-emulsion, Reversed Micelles, Surfactants, Membranes, and Poly-electrolytes... [Pg.400]

MICRO-EMULSION, REVERSED MICELLES, SURFACTANTS, MEMBRANES, AND POLYELECTROLYTES... [Pg.402]

Other claimed matter DBT for enrichment, biocatalyst preparation contacting process Enzymes contacting process Pure compounds as feedstock Membrane fragments and extracts Cell-free extract (envelope and its fragments + associated enzyme) reversible emulsion microemulsion reverse micelles Cell-free enzyme preparation microemulsified process RR and derivatives and other biocatalyst concepts + any known microorganism active for C—S bond cleavage... [Pg.120]

Figure 14.23 Silica nanoparticles containing fluorescent dye molecules can be prepared using a reverse micelle suspension process (a) The water-in-oil emulsion is formed with the aqueous phase droplets containing TEOS and dye molecules in detergent, (b) The final particles contain entrapped dye within the silica particle matrix, creating highly fluorescent particles. Figure 14.23 Silica nanoparticles containing fluorescent dye molecules can be prepared using a reverse micelle suspension process (a) The water-in-oil emulsion is formed with the aqueous phase droplets containing TEOS and dye molecules in detergent, (b) The final particles contain entrapped dye within the silica particle matrix, creating highly fluorescent particles.
The reverse emulsion stabilized by sodium dodecylsulfate (SDS, R0S03 Na+) retards the autoxidation of dodecane [24] and ethylbenzene [21,26,27]. The basis for this influence lies in the catalytic decomposition of hydroperoxides via the heterolytic mechanism. The decay of hydroperoxides under the action of SDS reverse micelles produces olefins with a yield of 24% (T=413 K, 0.02mol L 1 SDS, dodecane, [ROOH]0 = 0.08 mol L 1) [27], The thermal decay gives olefins in negligible amounts. The decay of hydroperoxides apparently occurs in the ionic layer of a micelle. Probably, it proceeds via the reaction of nucleophilic substitution in the polar layer of a micelle. [Pg.440]

It is important to note that in addition to microporous solids, other chemical systems have been used to template the growth of nanomaterials. For example, emulsions have been used to pattern both the pores in titania [14] and the packing of latex particles [46]. Reversed micelles have also been used as patterning agents. Examples include the syntheses of super-paramagnetic ferrite nanoparticles [15] and BaC03 nanowires [47]. Finally, carbon nanotubules have also been used as templates [16,48,49]. A variety of nanomaterials including metal oxides [16,48,49] and GaN have been synthesized inside such tubules [50]. [Pg.7]

It appears from a survey of the literature that the essential properties of micelles in nonpolar solvents are understood, namely their stability and variations of size, the dissociation behavior, and their solubilizing capacities. Reverse micelles can dissolve relatively large amounts of water (1-10% w/v depending on emulsion formula) as well as polar solutes and, of course, water-soluble compounds. Consequently, they can be used as media for a number of reactions, including enzyme-catalyzed reactions. Very few attempts to investigate such reverse micelles at subzero temperatures are known, in spite of the fact that hydrocarbon solutions present very low freezing points. [Pg.319]

The amount of water solubilized in a reverse micelle solution is commonly referred to as W, the molar ratio of water to surfactant, and this is also a good qualitative indicator of micelle size. This is an extremely important parameter since it will determine the number of surfactant molecules per micelle and is the main factor affecting micelle size. For an (AOT)/iso-octane/H20 system, the maximum Wq is around 60 [16], and above this value the transparent reverse micelle solution becomes a turbid emulsion, and phase separation may occur. The effect of salt type and concentration on water solubilization is important. Cations with a smaller hydration size, but the same ionic charge, result in less solubilization than cations with a large hydration size [17,18]. Micelle size depends on the salt type and concentration, solvent, surfactant type and concentration, and also temperature. [Pg.661]

An alternative to the injection method for importing enzymes into a microemulsion is the phase transfer method. In this method, a layer of an aqueous enzyme solution is located under a mixture of surfactant and oil. Upon gentle shaking, the enzyme is transferred into the reverse micelles of the hydrocarbon phase. Finally, the excess of water is removed and the hydrophobic substrates can be added. The main advantage of this method is that it ensures thermodynamically stable micro emulsions with maximum water concentrations. However, the method is very time consuming. The method is often applied in order to purify, concentrate or renaturate enzymes in the reverse micellar extraction process [54-58]. [Pg.191]

The determination of the enzyme activity as a function of the composition of the reaction medium is very important in order to find the optimal reaction conditions of an enzyme catalysed synthesis. In case of lipases, the hydrolysis of p-nitrophenyl esters in w/o-microemulsions is often used as a model reaction [19, 20]. The auto-hydrolysis of these esters in w/o-microemulsions is negligible. Because of the microstructure of the reaction media itself and the changing solvent properties of the water within the reverse micelles, the absorbance maximum of the p-nitrophenol varies in the microemulsion from that in bulk water, a fact that has to be considered [82]. Because of this, the water- and surfactant concentrations of the applied micro emulsions have to be well adjusted. [Pg.196]

Very recently, ESR techniques have been employed to study the packing of surfactant molecules at the oil/water interface in w/o HIPEs [102,103], By including an amphiphilic ESR probe, which is adsorbed at the oil/water interfaces, it is possible to determine the microstructure of the oil phase from the distribution of amphiphiles between the films surrounding the droplets and the reverse micelles. It was found that most of the surfactant is located in the micelles, over a wide range of water fraction values. However, when the water content is very high (water droplets of the emulsion, to stabilise the large interfacial area created. [Pg.184]

Although supercritical CO2 is an effective solvent for oils, fats, and similar substances, it is a poor one for nonvolatile hydrophilic (water-loving) substances such as proteins or metallic salts. Adding water as such to the supercritical CO2 is of little help, as the solubility of water in it is limited. Johnson and co-workers216 overcame the latter limitation by forming water-in-C02 emulsions with the aid of an added nontoxic perfluoropolyether surfactant that forms reverse micelles around the water microdroplets, in effect combining the special properties of supercritical CO2 with the solvent power of water. These emulsions can dissolve a variety of biomolecules at near-ambient temperatures, without loss of their biological activity. [Pg.158]

Hydrates have further applications in bioengineering through the research of John and coworkers (Rao et al., 1990 Nguyen, 1991 Nguyen et al., 1991, 1993 Phillips et al., 1991). These workers have used hydrates in reversed micelles (water-in-oil emulsions) to dehydrate protein solutions for recovery and for optimization of enzyme activity, at nondestructive and low-energy conditions. [Pg.22]

If the objective is to keep the enzyme active and stable in an aqueous phase but otherwise to use as much organic phase as possible, microemulsions are an option as a reaction medium. In contrast to ordinary emulsions they are thermodynamically stable and, at a particle diameter of 1-20 nm, accommodate most often only one enzyme molecule (Figure 12.5). The microemulsion droplets communicate rapidly and exchange their contents through elastic collisions. The boundary between microemulsions and reversed micelles is not clearly delineated, and the two notions are often used interchangeably. Enzyme of almost all classes and structures have been solubilized in microemulsion systems and used for reactions (Shield, 1986). [Pg.358]

Molecules that self-assemble into reverse micelles with low surfactant properties are generally efficient extractants (such as HDEHP, TBP, malonamides, etc.). Their adsorptions at the interface permit the complexation of the aqueous solute and their low surfactant properties permits the avoidance of the formation of very stable emulsion. Hence, ions are extracted, but typically there is less than one water molecule per ion extracted. Exact determination of coextracted water is still important, however, for interpreting the conductivity values and for evaluating the polar core volumes. Typical values are found for the Hamaker constant, because polar cores are supersaturated salt solution. [Pg.396]

It is generally accepted that the soft-core RMs contain amounts of water equal to or less than hydration of water of the polar part of the surfactant molecules, whereas in microemulsions the water properties are close to those of the bulk water (Fendler, 1984). At relatively small water to surfactant ratios (Wo < 5), all water molecules are tightly bound to the surfactant headgroups at the soft-core reverse micelles. These water molecules have high viscosities, low mobilities, polarities which are similar to hydrocarbons, and altered pHs. The solubilization properties of these two systems should clearly be different (El Seoud, 1984). The advantage of the RMs is their thermodynamic stability and the very small scale of the microstructure 1 to 20 nm. The radii of the emulsion droplets are typically 100 nm (Fendler, 1984 El Seoud, 1984). [Pg.79]

Mixture of two liquids which are not to miscible with each other, e.g., oil-in-water cutting fluid. Water-in-oil is classified as an inverted emulsion. The emulsions droplets are typically 1000 nm size. Soft-core reverse micelles size 10 to 20 nm.. [Pg.306]

In many of the examples presented in Table XIV, the existence of reversed micelles (331,231,231,211,231,HI,221,or micro-emulsions (349-352) is implicated and their presence is an important factor which influences the characteristics of a particular extraction process. Often, quantitative descriptions of such extractions is difficult due to the fact that many of the reversed micellar systems formed undergo an indefinite type of self-association in... [Pg.39]

Solubilization. Surfactants are normally used to physically stabilize emulsion droplets against aggregation by providing a protective membrane around the droplet. Nevertheless, there is often enough free surfactant present in an aqueous phase to form surfactant micelles. These surfactant micelles are capable of solubilizing the nonpolar molecules in their hydrophobic interior, which increases the affinity of nonpolar flavors for the aqueous phase. By a similar argument, reverse micelles in an oil phase are capable of solubilizing polar flavor molecules. [Pg.1854]

Internal Phase Composition As with the continuous phase, the internal phase properties also influence the properties of the ELM. Ionic strength, pH, and the presence of organic species will impact on the stability of the ELM. Emulsion liquid membranes work on the basis that the polar substances (usually high concentrations of acid or base) contained in the internal phase are impermeable to the membrane phase. However, the presence of the surfactant can cause the uptake of these compounds by the formation of reverse micelles [97]. [Pg.720]


See other pages where Emulsion reverse micelles is mentioned: [Pg.283]    [Pg.620]    [Pg.657]    [Pg.666]    [Pg.668]    [Pg.674]    [Pg.13]    [Pg.188]    [Pg.200]    [Pg.187]    [Pg.191]    [Pg.205]    [Pg.111]    [Pg.256]    [Pg.194]    [Pg.867]    [Pg.69]    [Pg.770]    [Pg.21]    [Pg.636]    [Pg.637]    [Pg.48]    [Pg.29]    [Pg.11]    [Pg.146]    [Pg.658]   
See also in sourсe #XX -- [ Pg.426 , Pg.427 ]




SEARCH



Emulsion micelles

Emulsions reversible

Micells reverse

Reverse emulsion

Reverse micelle

Reverse micelles, emulsion process

© 2024 chempedia.info