Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants, micelles, emulsions, and foams

An important common feature of macroion solutions is that they are characterized by at least two distinct length scales determined by the size of macroions (an order up to lOnm in the case of ionic micellar solutions) and size of the species of primary solvent (water molecules and salt ions, i.e. few Angstroms). Considering practical colloidal macro-dispersions, like foams, gels, emulsions, etc., usually we are dealing with as many as four distinct length scales molecular scale (up to lnm) that characterizes the species of the primary solvent (water or simple electrolytes) submicroscopic or nano scale (up to lOOnm) that characterizes nanoparticles or surfactant aggregates called micelles microscopic or mesoscopic scale (up to lOO m) that encompasses liquid droplets or bubbles in emulsion and foam systems as well as other colloidal suspensions, and macroscopic scale (the walls of container etc). [Pg.253]

Most discussions of surfactants in solution concern themselves with relatively low concentrations so that the system contains what may be called simple surfactant species such as monomers and their basic aggregates or micelles. Before entering into a discussion of micelles, however, it is important to know that although they have been the subject of exhaustive studies and theoretical considerations, they are only one of the several states in which surfactants can exist in solution. A complete understanding of surfactants requires a knowledge of the complete spectrum of possible states of the surfactant, including liquid crystalline phases, which can be important in the stabilization of emulsions and foams, as well in other areas. [Pg.362]

Most food products and food preparations are colloids. They are typically multicomponent and multiphase systems consisting of colloidal species of different kinds, shapes, and sizes and different phases. Ice cream, for example, is a combination of emulsions, foams, particles, and gels since it consists of a frozen aqueous phase containing fat droplets, ice crystals, and very small air pockets (microvoids). Salad dressing, special sauce, and the like are complicated emulsions and may contain small surfactant clusters known as micelles (Chapter 8). The dimensions of the particles in these entities usually cover a rather broad spectrum, ranging from nanometers (typical micellar units) to micrometers (emulsion droplets) or millimeters (foams). Food products may also contain macromolecules (such as proteins) and gels formed from other food particles aggregated by adsorbed protein molecules. The texture (how a food feels to touch or in the mouth) depends on the structure of the food. [Pg.31]

A dispersion Is a system made of discrete objects separated by a homogeneous medium In colloidal dispersions the objects are very small In at least one dimension. Colloidal sizes range from 1 to 100 nm however these limits are somewhat arbitrary, and It Is more useful to define colloids as dispersions where surface forces are large compared to bulk forces. Here we are concerned with systems where the dispersion medium Is a liquid examples are droplets In emulsions or mlcroemulslons (oll/water or water/oll), aggregates of amphiphilic molecules (surfactant micelles), foams, and all the dispersions of solid particles which are used as Intermediates In the manufacture of ceramics. At this stage we are not too concerned with the nature of the constituents, but rather with the structures which they form this Is a geometrical problem, where the system Is characterized by Its surface area A, by the shapes of Its Interfaces (curvatures - b ), and by the distances between opposing surfaces (d — concentration parameter). [Pg.312]

The use of surfactants or amphiphilic molecules in electrochemistry dates back over four decades [1,2]. Extensive research on electrochemistry in surfactant systems has been reported primarily in the last 20 years. Surfactant systems are ubiquitous. The aggregation of surfactant molecules may produce a variety of systems including micelles, monolayers and bilayers, vesicles, lipid films, emulsions, foams, and microemulsions. Developments in the area of electrochemistry in such association colloids and dispersions have been documented by Mackay and Texter [3]. Mackay [4] reviewed the developments in association colloids, particularly micelles and microemulsions. Rusling [5,6] also reviewed electrochemistry in micelles, microemulsions, and related organized media. This chapter focuses on microemulsions and does not deal with micelles, monolayers, emulsions, and other surfactant systems per se. [Pg.651]

Oscillatory structural forces appear in thin films of pure solvent between two smooth solid surfaces and in thin liquid films containing colloidal particles including macromolecules and surfactant micelles (Israelachvili 1992). In the first case, the oscillatory forces are called the solvation forces and they are important for the short-range interactions between solid particles and dispersions. In the second case, the structural forces affect the stability of foam and emulsion films as well as the flocculation processes in various colloids. At lower particle concentrations, the structural forces degenerate into the so-called depletion attraction, which is found to destabilize various dispersions. [Pg.17]

This chapter provides an introduction to the occurrence, properties and importance of surfactants as they relate to the petroleum industry. With an emphasis on the definition of important terms, the importance of surfactants, their micellization and adsorption behaviours, and their interfacial properties are demonstrated. It is shown how surfactants may be applied to alter interfacial properties, promote oil displacement, and stabilize or destabilize dispersions such as foams, emulsions, and suspensions. Understanding and controlling the properties of surfactant-containing solutions and dispersions has considerable practical importance since fluids that must be made to behave in a certain fashion to assist one stage of an oil production process, may require considerable modification in order to assist in another stage. [Pg.3]

This brief review has attempted to discuss some of the important phenomena in which surfactant mixtures can be involved. Mechanistic aspects of surfactant interactions and some mathematical models to describe the processes have been outlined. The application of these principles to practical problems has been considered. For example, enhancement of solubilization or surface tension depression using mixtures has been discussed. However, in many cases, the various processes in which surfactants interact generally cannot be considered by themselves, because they occur simultaneously. The surfactant technologist can use this to advantage to accomplish certain objectives. For example, the enhancement of mixed micelle formation can lead to a reduced tendency for surfactant precipitation, reduced adsorption, and a reduced tendency for coacervate formation. The solution to a particular practical problem involving surfactants is rarely obvious because often the surfactants are involved in multiple steps in a process and optimization of a number of simultaneous properties may be involved. An example of this is detergency, where adsorption, solubilization, foaming, emulsion formation, and other phenomena are all important. In enhanced oil recovery. [Pg.24]


See other pages where Surfactants, micelles, emulsions, and foams is mentioned: [Pg.246]    [Pg.248]    [Pg.250]    [Pg.252]    [Pg.254]    [Pg.256]    [Pg.258]    [Pg.260]    [Pg.262]    [Pg.264]    [Pg.266]    [Pg.268]    [Pg.270]    [Pg.272]    [Pg.274]    [Pg.276]    [Pg.278]    [Pg.317]    [Pg.246]    [Pg.248]    [Pg.250]    [Pg.252]    [Pg.254]    [Pg.256]    [Pg.258]    [Pg.260]    [Pg.262]    [Pg.264]    [Pg.266]    [Pg.268]    [Pg.270]    [Pg.272]    [Pg.274]    [Pg.276]    [Pg.278]    [Pg.317]    [Pg.11]    [Pg.74]    [Pg.756]    [Pg.69]    [Pg.1]    [Pg.13]    [Pg.2]    [Pg.444]    [Pg.162]    [Pg.668]    [Pg.143]    [Pg.2]    [Pg.13]    [Pg.319]    [Pg.635]    [Pg.13]    [Pg.364]    [Pg.274]    [Pg.500]    [Pg.603]    [Pg.127]    [Pg.170]   


SEARCH



And emulsions

Emulsion micelles

Emulsions and foams

Emulsions and surfactants

Foams emulsions

Foams, surfactant

Micelles and micellization

Micellization surfactants

Surfactant and Micelleization

Surfactants foaming

© 2024 chempedia.info