Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion polymerization micelles

Figure C2.3.11 Key surfactant stmctures (not to scale) in emulsion polymerization micelles containing monomer and oligomer, growing polymer particle stabilized by surfactant and an emulsion droplet of monomer (reservoir) also coated with surfactant. Adapted from figure 4-1 in [67],... Figure C2.3.11 Key surfactant stmctures (not to scale) in emulsion polymerization micelles containing monomer and oligomer, growing polymer particle stabilized by surfactant and an emulsion droplet of monomer (reservoir) also coated with surfactant. Adapted from figure 4-1 in [67],...
Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

The production of organic polymeric particles in tire size range of 30-300 nm by emulsion polymerization has become an important teclmological application of surfactants and micelles. Emulsion polymerization is very well and extensively reviewed in many monographs and texts [67, 68], but we want to briefly illustrated tire role of micelles in tliis important process. [Pg.2596]

The surfactant is initially distributed through three different locations dissolved as individual molecules or ions in the aqueous phase, at the surface of the monomer drops, and as micelles. The latter category holds most of the surfactant. Likewise, the monomer is located in three places. Some monomer is present as individual molecules dissolved in the water. Some monomer diffuses into the oily interior of the micelle, where its concentration is much greater than in the aqueous phase. This process is called solubilization. The third site of monomer is in the dispersed droplets themselves. Most of the monomer is located in the latter, since these drops are much larger, although far less abundant, than the micelles. Figure 6.10 is a schematic illustration of this state of affairs during emulsion polymerization. [Pg.399]

In an emulsion polymerization experiment at 60°C the number of micelles per unit volume is 5.0 X 10 hter and the monomer concentration in the micelle... [Pg.401]

In this example the number of micelles per unit volume is exactly twice the stationary-state free-radical concentration hence the rates are identical. Although the numbers were chosen in this example to produce this result, neither N nor M are unreasonable values in actual emulsion polymerizations. [Pg.402]

Sta.g C I Pa.rtlcIeNucIea.tlon, At the start of a typical emulsion polymerization the reaction mass consists of an aqueous phase containing smaU amounts of soluble monomer, smaU spherical micelles, and much larger monomer droplets. The micelles are typicaUy 5—30-nm in diameter and are saturated with monomer emulsified by the surfactant. The monomer droplets are larger, 1,000—10,000-nm in diameter, and are also stabilized by the surfactant. [Pg.23]

Soap. A critical ingredient for emulsion polymerization is the soap (qv), which performs a number of key roles, including production of oil (monomer) in water emulsion, provision of the loci for polymerization (micelle), stabilization of the latex particle, and impartation of characteristics to the finished polymer. [Pg.494]

Emulsion Polymerization. Emulsion polymerization takes place in a soap micelle where a small amount of monomer dissolves in the micelle. The initiator is water-soluble. Polymerization takes place when the radical enters the monomer-swollen micelle (91,92). Additional monomer is supphed by diffusion through the water phase. Termination takes place in the growing micelle by the usual radical-radical interactions. A theory for tme emulsion polymerization postulates that the rate is proportional to the number of particles [N. N depends on the 0.6 power of the soap concentration [S] and the 0.4 power of initiator concentration [i] the average number of radicals per particle is 0.5 (93). [Pg.502]

Emulsion Polymerization. In this method, polymerization is initiated by a water-soluble catalyst, eg, a persulfate or a redox system, within the micelles formed by an emulsifying agent (11). The choice of the emulsifier is important because acrylates are readily hydrolyzed under basic conditions (11). As a consequence, the commonly used salts of fatty acids (soaps) are preferably substituted by salts of long-chain sulfonic acids, since they operate well under neutral and acid conditions (12). After polymerization is complete the excess monomer is steam-stripped, and the polymer is coagulated with a salt solution the cmmbs are washed, dried, and finally baled. [Pg.474]

Suspension polymerization produces beads of plastic for styrene, methyl methacrviaie. viny l chloride, and vinyl acetate production. The monomer, in which the catalyst must be soluble, is maintained in droplet fonn suspended in water by agitation in the presence of a stabilizer such as gelatin each droplet of monomer undergoes bulk polymerization. In emulsion polymerization, ihe monomer is dispersed in water by means of a surfactant to form tiny particles held in suspension I micellcsK The monomer enters the hydrocarbon part of the micelles for polymerization by a... [Pg.277]

The progression of an ideal emulsion polymerization is considered in three different intervals after forming primary radicals and low-molecular weight oligomers within the water phase. In the first stage (Interval I), the polymerization progresses within the micelle structure. The oligomeric radicals react with the individual monomer molecules within the micelles to form short polymer chains with an ion radical on one end. This leads to the formation of a new phase (i.e., polymer latex particles swollen with the monomer) in the polymerization medium. [Pg.190]

The kinetic mechanism of emulsion polymerization was developed by Smith and Ewart [10]. The quantitative treatment of this mechanism was made by using Har-kin s Micellar Theory [18,19]. By means of quantitative treatment, the researchers obtained an expression in which the particle number was expressed as a function of emulsifier concentration, initiation, and polymerization rates. This expression was derived for the systems including the monomers with low water solubility and partly solubilized within the micelles formed by emulsifiers having low critical micelle concentration (CMC) values [10]. [Pg.192]

The function of emulsifier in the emulsion polymerization process may be summarized as follows [45] (1) the insolubilized part of the monomer is dispersed and stabilized within the water phase in the form of fine droplets, (2) a part of monomer is taken into the micel structure by solubilization, (3) the forming latex particles are protected from the coagulation by the adsorption of monomer onto the surface of the particles, (4) the emulsifier makes it easier the solubilize the oligomeric chains within the micelles, (5) the emulsifier catalyzes the initiation reaction, and (6) it may act as a transfer agent or retarder leading to chemical binding of emulsifier molecules to the polymer. [Pg.196]

Based on the Smith-Ewart theory, the number of latex particles formed and the rate of polymerization in Interval II is proportional with the 0,6 power of the emulsifier concentration. This relation was also observed experimentally for the emulsion polymerization of styrene by Bartholomeet al. [51], Dunn and Al-Shahib [52] demonstrated that when the concentrations of the different emulsifiers were selected so that the micellar concentrations were equal, the same number of particles having the same size could be obtained by the same polymerization rates in Interval II in the existence of different emulsifiers [52], The number of micelles formed initially in the polymerization medium increases with the increasing emulsifier concentration. This leads to an increase in the total amount of monomer solubilized by micelles. However, the number of emulsifier molecules in one micelle is constant for a certain type of emulsifier and does not change with the emulsifier concentration. The monomer is distributed into more micelles and thus, the... [Pg.197]

Therefore, the polymerization progresses within the micelle structure by following the traditional mechanism of emulsion polymerization. [Pg.200]

A novel approach to RAFT emulsion polymerization has recently been reported.461529 In a first step, a water-soluble monomer (AA) was polymerized in the aqueous phase to a low degree of polymerization to form a macro RAFT agent. A hydrophobic monomer (BA) was then added under controlled feed to give amphiphilic oligomers that form micelles. These constitute a RAFT-containing seed. Continued controlled feed of hydrophobic monomer may be used to continue the emulsion polymerization. The process appears directly analogous to the self-stabilizing lattices approach previously used in macromonomer RAFT polymerization (Section 9.5.2). Both processes allow emulsion polymerization without added surfactant. [Pg.521]

In emulsion polymerization, a solution of monomer in one solvent forms droplets, suspended in a second, immiscible solvent. We often employ surfactants to stabilize the droplets through the formation of micelles containing pure monomer or a monomer in solution. Micelles assemble when amphiphilic surfactant molecules (containing both a hydrophobic and hydrophilic end) organize at a phase boundary so that their hydrophilic portion interacts with the hydrophilic component of the emulsion, while their hydrophobic part interacts with the hydrophobic portion of the emulsion. Figure 2.14 illustrates a micellized emulsion structure. To start the polymerization reaction, a phase-specific initiator or catalyst diffuses into the core of the droplets, starting the polymerization. [Pg.55]

Suspension and emulsion polymerization processes are very similar in that they both require an interface. The main difference is where the reaction takes place, on the skin of the suspended droplet or in the center of the micelle. [Pg.56]

Since microgels are intramolecularly crosslinked macromolecules of colloidal dimensions, it is necessary for their synthesis to control the size of the growing crosslinked molecules. This can be achieved by carrying out polymerization and crosslinking in a restricted volume, i.e. that of a micelle or of a polymer coil. Thus, two general methods of microgel synthesis are available (1) emulsion polymerization, and (2) solution polymerization. [Pg.144]


See other pages where Emulsion polymerization micelles is mentioned: [Pg.3922]    [Pg.3922]    [Pg.2596]    [Pg.353]    [Pg.401]    [Pg.401]    [Pg.401]    [Pg.278]    [Pg.350]    [Pg.538]    [Pg.190]    [Pg.190]    [Pg.193]    [Pg.196]    [Pg.197]    [Pg.198]    [Pg.198]    [Pg.199]    [Pg.205]    [Pg.603]    [Pg.204]    [Pg.205]    [Pg.207]    [Pg.208]    [Pg.246]    [Pg.549]    [Pg.346]    [Pg.220]    [Pg.14]    [Pg.15]    [Pg.77]   
See also in sourсe #XX -- [ Pg.352 ]

See also in sourсe #XX -- [ Pg.352 ]




SEARCH



Emulsion micelles

Emulsion polymerization

Emulsions, polymeric

Micelle polymerization

Micelles in emulsion polymerization

Polymeric micelles

Polymerization emulsion polymerizations

Use of Micelles in Emulsion Polymerization

© 2024 chempedia.info